Volume 5, Issue 1 (Winter-Spring 2022)                   Mod Med Lab J 2022, 5(1): 1-9 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bhatt M P, Shrestha S, Pokhrel S, Rijal P, Nagila A. Rate of Glucose Utilization by Blood Cells in Serum and Plasma Specimens With or Without Using Preservative. Mod Med Lab J. 2022; 5 (1) :1-9
URL: http://modernmedlab.com/article-1-103-en.html
Abstract:   (331 Views)
Objective: This study aims to estimate and compare the time-course change in blood glucose levels by blood cells in serum, and plasma with or without preservatives, which may reflect the rate of glucose utilization by blood cells.
Method: This laboratory-based cross-sectional study was carried out using a blood specimen of 28 participants among which 14 were diagnosed with diabetes and 14 were non-diabetic. Fasting blood specimen was collected in a plain tube, Ethylene Diamine Tetra Acetic Acid (EDTA) tube, and EDTA+ Sodium Fluoride (NaF) tube. The test was performed by hourly estimation of glucose for 24 hours. Time-course changes in glucose levels in serum and plasma with or without NaF preservative were statistically compared using ANOVA test.
Result: Serum and EDTA plasma glucose levels decreased gradually after the 3rd hour to 24th hour in comparison to EDTA+NaF plasma (p<0.05).  The rate of glucose utilization by blood cells was significantly higher in clotted blood and anticoagulated blood (EDTA) specimens in comparison with anticoagulated blood (EDTA) containing preservative (NaF) ((p<0.05). In addition, decreased rate of glucose utilization was observed in hyperglycemic specimens compared to that of normoglycemic blood.
Conclusion: Higher rate of glucose utilization by blood cells observed in serum and EDTA plasma represents a pre-analytical error in a long-standing specimen. The use of preservative NaF with EDTA significantly prevents cellular glucose utilization and stabilize plasma glucose level.  In contrast, this study also shows further insight into the reduced cellular metabolic rate of glucose utilization in diabetes mellitus.
Full-Text [PDF 913 kb]   (469 Downloads)    
Type of Study: Original | Subject: Laboratory Methods

1. Kanagasabapathy A, Kumari S. Guidelines on standard operating procedures for clinical chemistry. Guidelines on standard operating procedures for clinical chemistry. 2000;107. [Google Scholar]
2. Al Salhen KS, Saad EK, Aznine AJ. The Effect of Storage Time and Different Anticoagulants on Fasting Blood Glucose Concentration. Al-Mukhtar Journal of Sciences 2018;33(2):100-6. [Article]
3. Nwosu O, Nwani C. Stability of Serum/Plasma Glucose for the Diagnosis of Diabetes Mellitus. Bio-Research. 2008;6(2):380-3. [DOI:10.4314/br.v6i2.28671]
4. Lippi G, Salvagno GL, Lampus S, Danese E, Gelati M, Bovo C, et al. Impact of blood cell counts and volumes on glucose concentration in uncentrifuged serum and lithium-heparin blood tubes. Clinical Chemistry and Laboratory Medicine (CCLM). 2018;56(12):2125-31. [DOI:10.1515/cclm-2018-0523]
5. Lawrence JM, Contreras R, Chen W, Sacks DA. Trends in the prevalence of preexisting diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999–2005. Diabetes care. 2008;31(5):899-904. [DOI:10.2337/dc07-2345]
6. Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clinical chemistry. 2002;48(3):436-72. [DOI:10.1093/clinchem/48.3.436]
7. Kim HS. Blood Glucose Measurement: Is Serum Equal to Plasma? Diabetes Metab J. 2016;40(5):365-6. [DOI:10.4093/dmj.2016.40.5.365]
8. Chan AY, Swaminathan R, Cockram CS. Effectiveness of sodium fluoride as a preservative of glucose in blood. Clinical chemistry. 1989;35(2):315-7. [DOI:10.1093/clinchem/35.2.315]
9. Peake MJ, Bruns DE, Sacks DB, Horvath AR. It’s time for a better blood collection tube to improve the reliability of glucose results. Diabetes care. 2013;36(1):e2-e2. [DOI:10.2337/dc12-1312]
10. Puchulu-Campanella E, Chu H, Anstee DJ, Galan JA, Tao WA, Low PS. Identification of the components of a glycolytic enzyme metabolom on the human red blood cell membrane. Journal of Biological Chemistry. 2013;288(2):848-58. [DOI:10.1074/jbc.M112.428573]
11. Winter T, Hannemann A, Suchsland J, Nauck M, Petersmann A. Long-term stability of glucose: glycolysis inhibitor vs. gel barrier tubes. Clinical chemistry and laboratory medicine. 2018;56(8):1251-8. [DOI:10.1515/cclm-2017-0860]
12. Lippi G, Nybo M, Cadamuro J, Guimaraes JT, van Dongen-Lases E, Simundic A-M. Blood glucose determination: effect of tube additives. Advances in clinical chemistry. 2018; 84:101-23. [DOI:10.1016/bs.acc.2017.12.003]
13. Mohri M, Shakeri H, Zadeh SL. Effects of common anticoagulants (heparin, citrate and EDTA) on routine plasma biochemistry of cattle. Comparative Clinical Pathology. 2007;16(3):207-9. [DOI:10.1007/s00580-006-0664-9]
14. Spencer NC, Sunday JJ, Erifeta O, Georgina O, Agbor AA, Esosa US, et al. Comparative stabilizing effects of some anticoagulants on fasting blood glucose of diabetics and non-diabetics, determined by spectrophotometry (glucose oxidase). Asian Journal of Medical Sciences. 2011;3(6):234-6. [Article]
15. Lane M, Gardner DK. Inhibiting 3‐phosphoglycerate kinase by EDTA stimulates the development of the cleavage stage mouse embryo. Molecular reproduction and development. 2001;60(2):233-40. [DOI:10.1002/mrd.1083]
16. Frank EA, Shubha M, D'Souza CJ. Blood glucose determination: plasma or serum? Journal of clinical laboratory analysis. 2012;26(5):317-20. [DOI:10.1002/jcla.21524]
17. Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clinical chemistry. 2011;57(6):e1-e47. [DOI:10.1093/clinchem/48.3.436]
18. Fobker M. Stability of glucose in plasma with different anticoagulants. Clinical Chemistry and Laboratory Medicine (CCLM). 2014;52(7):1057-60. [DOI:10.1515/cclm-2013-1049]
19. Schrot RJ, Patel KT, Foulis P. Evaluation of inaccuracies in the measurement of glycemia in the laboratory, by glucose meters, and through measurement of hemoglobin A1c. Clinical Diabetes. 2007;25(2):43-9. [DOI:10.2337/diaclin.25.2.43]
20. Louie L, Goodfellow J, Mathieu P, Glatt A, Louie M, Simor A. Rapid detection of methicillin-resistant staphylococci from blood culture bottles by using a multiplex PCR assay. Journal of clinical microbiology. 2002;40(8):2786-90. [DOI:10.1128/JCM.40.8.2786-2790.2002]
21. Chernow B, Jackson E, Miller J, Wiese J. Blood conservation in acute care and critical care. AACN Advanced Critical Care. 1996;7(2):191-7. [Article]
22. Ganapathy UK, Ramachandran N. D, L Glyceraldehyde-Will it be an effective Antiglycolytic Agent? International Journal of Clinical Biochemistry and Research. 2016;3(4):449-52. [DOI:10.18231/2394-6377.2016.0023]
23. Sacks DB. A1C versus glucose testing: a comparison. Diabetes care. 2011;34(2):518-23. [DOI:10.2337/dc10-1546]
24. Gambino R. Sodium fluoride: an ineffective inhibitor of glycolysis. Annals of clinical biochemistry. 2013;50(1):3-5. [DOI:10.1258/acb.2012.012135]
25. Frank EA, Shubha MC, D'Souza CJ. Blood glucose determination: plasma or serum? Journal of clinical laboratory analysis. 2012;26(5):317-20. [DOI:10.1002/jcla.21524]
26. Gupta S, Gupta AK, Verma M, Singh K, Kaur A, Chopra B, et al. A study to compare the plasma glucose levels obtained in sodium fluoride and citrate buffer tubes at a tertiary care hospital in Punjab. International Journal of Applied and Basic Medical Research. 2016;6(1):50. [DOI:10.4103/2229-516X.174010]
27. YOUNG DS. Specimen collection and processing-sources of biological variation. Tietz textbook of clinical chemistry. 1994:58-101. [Article]
28. Clark S, Youngman LD, Palmer A, Parish S, Peto R, Collins R. Stability of plasma analytes after delayed separation of whole blood: implications for epidemiological studies. International journal of epidemiology. 2003;32(1):125-30. [DOI:10.1093/ije/dyg023]
29. Nwangwu S, Sunday Joel J, Kingsley O, Okwuonu U, Sunday A, Chinenye O. Effects of Anticoagulants on Fasting Blood Glucose of Diabetics and Non-Diabetics Individuals, as well as Random Blood Glucose of Apparently Healthy Individuals, Determined by One Touch Ultra Glucometer. International Journal of Pharmaceutical and Clinical Science. 2012;2:11-3. [Article]
30. Turchiano M, Nguyen C, Fierman A, Lifshitz M, Convit A. Impact of Blood Sample Collection and Processing Methods on Glucose Levels in Community Outreach Studies. Journal of Environmental and Public Health. 2013;2013. [DOI:10.1155/2013/256151]
31. Butt T, Masud K, Butt H, Bhatti MS. Glucose level variation in blood with Sodium Fluoride and in Serum. PAKISTAN JOURNAL OF MEDICAL & HEALTH SCIENCES. 2018;12(2):687-9. [Article]
32. Gupta S, Kaur H. Inhibition of Glycolysis for Glucose Estimation in Plasma: Recent Guidelines and their Implications. Indian J Clin Biochem. 2014;29(2):262-4. [DOI:10.1007/s12291-013-0405-1]
33. Vesper HW, Archibold E, Porter KH, Myers GL. Assessment of a reference procedure to collect and analyze glucose in capillary whole blood. Clinical chemistry. 2005;51(5):901-3. [DOI:10.1373/clinchem.2004.042051]
34. Hu X-j, Peng F, Zhou H-q, Zhang Z-h, Cheng W-y, Feng H-f. The abnormality of glucose transporter in the erythrocyte membrane of Chinese type 2 diabetic patients. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2000;1466(1-2):306-14. [DOI:10.1016/S0005-2736(00)00175-9]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Modern Medical Laboratory Journal