Volume 4, Issue 1 (Winter-Spring 2021)                   Mod Med Lab J 2021, 4(1): 52-67 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi Sepahvand E, Masoudnia M, Sadat Hosseininia H, Kazempour A, Bostanshirin N, Jalili A et al . Representing Tumor-Associated Macrophages as the Angiogenesis and Tumor Microenvironment Regulator. Mod Med Lab J. 2021; 4 (1) :52-67
URL: http://modernmedlab.com/article-1-98-en.html
Abstract:   (134 Views)
Over the recent years, studies in the area of cancer microenvironment and the cellular groups existing in this environment have indicated the significant role of them in progression of cancer studies. Among the mentioned cellular groups, as the main inflammatory components of stroma, Tumor associate macrophage (TAM) cells have the capacity of affecting the cancer tissue in different aspects. With their plasticity capacity, macrophages can change into M1 (classic) or M2 (alternative) macrophage reacting to different signals.  In the tumor environment, they usually change into the M2 phenotype, and this phenotype can create a precancerous role in the macrophage and facilitate the invasion of tumor cells and metastasis, angiogenesis, remodeling of the extracellular matrix, and suppression of the immune system. The various roles of these cells and their reversibility have made the TAMs a potential target of the cancer treatment. This process takes place by different mechanisms such as Interference with TAMs survival, Inhibition of macrophage recruitment, repolarization of M2-like TAMs towards an M1-like phenotype, nano particle and liposome-based drug delivery system. This review study investigates the markers and the function of M1, M2, and tumor-associated macrophages, and finally, it proposes the latest clinical and laboratory approach for targeting the TAMs.  
Full-Text [PDF 946 kb]   (56 Downloads)    
Type of Study: Review | Subject: Immunology

1. Lança T, Silva-Santos B. The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy. Oncoimmunology. 2012;1(5):717-25. [DOI:10.4161/onci.20068]
2. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. 2018;233(9):6425-40. [DOI:10.1002/jcp.26429]
3. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39-51. [DOI:10.1016/j.cell.2010.03.014]
4. Marchesi F, Cirillo M, Bianchi A, Gately M, Olimpieri OM, Cerchiara E, et al. High density of CD68+/CD163+ tumour-associated macrophages (M2-TAM) at diagnosis is significantly correlated to unfavorable prognostic factors and to poor clinical outcomes in patients with diffuse large B-cell lymphoma. Hematological oncology. 2015;33(2):110-2. [DOI:10.1002/hon.2142]
5. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. The Journal of clinical investigation. 2012;122(3):787-95. [DOI:10.1172/JCI59643]
6. Sawa-Wejksza K, Kandefer-Szerszen M. Tumor-Associated Macrophages as Target for Antitumor Therapy. Archivum immunologiae et therapiae experimentalis. 2018;66(2):97-111. [DOI:10.1007/s00005-017-0480-8]
7. Wang J, Li D, Cang H, Guo B. Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer medicine. 2019. [DOI:10.1002/cam4.2327]
8. Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PloS one. 2012;7(12):e50946. [DOI:10.1371/journal.pone.0050946]
9. Jayasingam SD, Citartan M, Thang TH, Zin AAM, Ang KC, Ch'ng ES. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Frontiers in Oncology. 2019;9. [DOI:10.3389/fonc.2019.01512]
10. Stoger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, et al. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225(2):461-8. [DOI:10.1016/j.atherosclerosis.2012.09.013]
11. Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35(15):4477-88. [DOI:10.1016/j.biomaterials.2014.02.012]
12. Vasconcelos DP, Costa M, Amaral IF, Barbosa MA, Aguas AP, Barbosa JN. Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators. Biomaterials. 2015;37:116-23. [DOI:10.1016/j.biomaterials.2014.10.035]
13. Porta C, Riboldi E, Ippolito A, Sica A, editors. Molecular and epigenetic basis of macrophage polarized activation. Seminars in immunology; 2015: Elsevier. [DOI:10.1016/j.smim.2015.10.003]
14. Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer research. 2010;70(12):4840-9. [DOI:10.1158/0008-5472.CAN-10-0269]
15. Lin Y, Zhao J-L, Zheng Q-J, Jiang X, Tian J, Liang S-Q, et al. Notch signaling modulates macrophage polarization and phagocytosis through direct suppression of signal regulatory protein α expression. Frontiers in immunology. 2018;9:1744. [DOI:10.3389/fimmu.2018.01744]
16. Ruytinx P, Proost P, Van Damme J, Struyf S. Chemokine-induced macrophage polarization in inflammatory conditions. Frontiers in immunology. 2018;9:1930. [DOI:10.3389/fimmu.2018.01930]
17. Jalili A, Moslemi E, Izadi A, Mosaffa N. Assessing the gene expression of IL4, TNFα, TGFβ and IFNγ in studying M1 and M2 macrophages derived from human monocyte. Research in Medicine 2015;39(1):9-13. [Google Scholar]
18. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nature reviews Clinical oncology. 2017;14(7):399. [DOI:10.1038/nrclinonc.2016.217]
19. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248-64. [DOI:10.1016/j.cell.2019.01.021]
20. Linde N, Lederle W, Depner S, van Rooijen N, Gutschalk CM, Mueller MM. Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. The Journal of pathology. 2012;227(1):17-28. [DOI:10.1002/path.3989]
21. Na Y-R, Yoon Y-N, Son D-I, Seok S-H. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PloS one. 2013;8(5):e63451. [DOI:10.1371/journal.pone.0063451]
22. Lanaya H, Natarajan A, Komposch K, Li L, Amberg N, Chen L, et al. EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nature cell biology. 2014;16(10):972. [DOI:10.1038/ncb3031]
23. Hardbower DM, Coburn LA, Asim M, Singh K, Sierra JC, Barry DP, et al. EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis. Oncogene. 2017;36(27):3807-19. [DOI:10.1038/onc.2017.23]
24. Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer science. 2014;105(1):1-8. [DOI:10.1111/cas.12314]
25. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer cell. 2015;27(4):462-72. [DOI:10.1016/j.ccell.2015.02.015]
26. Cho U, Kim B, Kim S, Han Y, Song YS. Pro-inflammatory M1 macrophage enhances metastatic potential of ovarian cancer cells through NF-kappaB activation. Molecular carcinogenesis. 2018;57(2):235-42. [DOI:10.1002/mc.22750]
27. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nature Reviews Cancer. 2013;13(11):759-71. [DOI:10.1038/nrc3611]
28. Wang K, Karin M. Tumor-elicited inflammation and colorectal cancer. Advances in cancer research. 128: Elsevier; 2015. p. 173-96. [DOI:10.1016/bs.acr.2015.04.014]
29. Wang Y, Shen Y, Wang S, Shen Q, Zhou X. The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer letters. 2018;415:117-28. [DOI:10.1016/j.canlet.2017.12.003]
30. Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. Journal of hematology & oncology. 2019;12(1):76. [DOI:10.1186/s13045-019-0760-3]
31. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. Journal of biomedical science. 2019;26(1):1-13. [DOI:10.1186/s12929-019-0568-z]
32. Yao Y, Xu X-H, Jin L. Macrophage polarization in physiological and pathological pregnancy. Frontiers in immunology. 2019;10:792. [DOI:10.3389/fimmu.2019.00792]
33. Kim J, Bae JS. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediators of inflammation. 2016;2016:6058147. [DOI:10.1155/2016/6058147]
34. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature reviews Immunology. 2007;7(1):41-51. [DOI:10.1038/nri1995]
35. Oft M. IL-10: master switch from tumor-promoting inflammation to antitumor immunity. Cancer immunology research. 2014;2(3):194-9. [DOI:10.1158/2326-6066.CIR-13-0214]
36. Yao X, Huang J, Zhong H, Shen N, Faggioni R, Fung M, et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacology & therapeutics. 2014;141(2):125-39. [DOI:10.1016/j.pharmthera.2013.09.004]
37. Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S, et al. IL‐6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. Journal of cellular biochemistry. 2018;119(11):9419-32. [DOI:10.1002/jcb.27259]
38. Kong L, Zhou Y, Bu H, Lv T, Shi Y, Yang J. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. Journal of experimental & clinical cancer research : CR. 2016;35(1):131. [DOI:10.1186/s13046-016-0412-1]
39. Qu X, Tang Y, Hua S. Immunological approaches towards cancer and inflammation: a cross talk. Frontiers in immunology. 2018;9:563. [DOI:10.3389/fimmu.2018.00563]
40. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunology today. 1992;13(7):265-70. [DOI:10.1016/0167-5699(92)90008-U]
41. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, et al. The cellular and molecular origin of tumor-associated macrophages. Science (New York, NY). 2014;344(6186):921-5. [DOI:10.1126/science.1252510]
42. Shand FH, Ueha S, Otsuji M, Koid SS, Shichino S, Tsukui T, et al. Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(21):7771-6. [DOI:10.1073/pnas.1402914111]
43. Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cellular & molecular immunology. 2015;12(1):1-4. [DOI:10.1038/cmi.2014.83]
44. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445-55. [DOI:10.1038/nature12034]
45. Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nature immunology. 2016;17(1):2. [DOI:10.1038/ni.3341]
46. Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal immunology. 2013;6(3):498-510. [DOI:10.1038/mi.2012.89]
47. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science (New York, NY). 2012;336(6077):86-90. [DOI:10.1126/science.1219179]
48. Sharma SK, Chintala NK, Vadrevu SK, Patel J, Karbowniczek M, Markiewski MM. Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. Journal of immunology (Baltimore, Md : 1950). 2015;194(11):5529-38. [DOI:10.4049/jimmunol.1403215]
49. De I, Steffen MD, Clark PA, Patros CJ, Sokn E, Bishop SM, et al. CSF1 Overexpression Promotes High-Grade Glioma Formation without Impacting the Polarization Status of Glioma-Associated Microglia and Macrophages. Cancer research. 2016;76(9):2552-60. [DOI:10.1158/0008-5472.CAN-15-2386]
50. Bonavita E, Gentile S, Rubino M, Maina V, Papait R, Kunderfranco P, et al. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell. 2015;160(4):700-14. [DOI:10.1016/j.cell.2015.01.004]
51. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49-61. [DOI:10.1016/j.immuni.2014.06.010]
52. Weitzenfeld P, Ben-Baruch A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer letters. 2014;352(1):36-53. [DOI:10.1016/j.canlet.2013.10.006]
53. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nature reviews Cancer. 2004;4(1):71-8. [DOI:10.1038/nrc1256]
54. Sierra-Filardi E, Nieto C, Dominguez-Soto A, Barroso R, Sanchez-Mateos P, Puig-Kroger A, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. Journal of immunology (Baltimore, Md : 1950). 2014;192(8):3858-67. [DOI:10.4049/jimmunol.1302821]
55. Laviron M, Boissonnas A. Ontogeny of tumor-associated macrophages. Frontiers in immunology. 2019; 10:1799. [DOI:10.3389/fimmu.2019.01799]
56. Tymoszuk P, Evens H, Marzola V, Wachowicz K, Wasmer MH, Datta S, et al. In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors. European journal of immunology. 2014;44(8):2247-62. [DOI:10.1002/eji.201344304]
57. Van Overmeire E, Stijlemans B, Heymann F, Keirsse J, Morias Y, Elkrim Y, et al. M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer research. 2016;76(1):35-42. [DOI:10.1158/0008-5472.CAN-15-0869]
58. Su S, Liu Q, Chen J, Chen J, Chen F, He C, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer cell. 2014;25(5):605-20. [DOI:10.1016/j.ccr.2014.03.021]
59. Nandi B, Shapiro M, Samur MK, Pai C, Frank NY, Yoon C, et al. Stromal CCR6 drives tumor growth in a murine transplantable colon cancer through recruitment of tumor-promoting macrophages. Oncoimmunology. 2016;5(8):e1189052. [DOI:10.1080/2162402X.2016.1189052]
60. Zhao X, Liu HQ, Li J, Liu XL. Endothelial progenitor cells promote tumor growth and progression by enhancing new vessel formation. Oncology letters. 2016;12(2):793-9. [DOI:10.3892/ol.2016.4733]
61. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences. 2020;77(9):1745-70. [DOI:10.1007/s00018-019-03351-7]
62. Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. Journal of hematology & oncology. 2017;10(1):1-12. [DOI:10.1186/s13045-017-0430-2]
63. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Frontiers in physiology. 2014;5:75. [DOI:10.3389/fphys.2014.00075]
64. Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nature reviews Cancer. 2010;10(6):415-24. [DOI:10.1038/nrc2853]
65. Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix biology : journal of the International Society for Matrix Biology. 2015;44-46:94-112. [DOI:10.1016/j.matbio.2015.04.004]
66. Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Murata M. Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. International journal of molecular sciences. 2017;18(8):1808. [DOI:10.3390/ijms18081808]
67. Lan YY, Heather JM, Eisenhaure T, Garris CS, Lieb D, Raychowdhury R, et al. Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell. 2019;18(2):e12901. [DOI:10.1111/acel.12901]
68. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology. 2018;18(5):309-24. [DOI:10.1038/nri.2017.142]
69. Suarez‐Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Molecular oncology. 2017;11(7):805-23. [DOI:10.1002/1878-0261.12095]
70. Lu T, Ramakrishnan R, Altiok S, Youn J-I, Cheng P, Celis E, et al. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. The Journal of clinical investigation. 2011;121(10):4015-29. [DOI:10.1172/JCI45862]
71. Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer. Frontiers in immunology. 2013;4:190. [DOI:10.3389/fimmu.2013.00190]
72. Xiangrong C, Jingbo L. Dendritic cells play a role in the specific cellular immunity. Mian yi xue za zhi= Journal of Immunology. 2001;17(3):231-4. [Google Scholar]
73. Hansen M, Andersen MH. The role of dendritic cells in cancer. Seminars in immunopathology; 2017: Springer. [DOI:10.1007/s00281-016-0592-y]
74. Martinek J, Wu T-C, Cadena D, Banchereau J, Palucka K. Interplay between dendritic cells and cancer cells. International Review of Cell and Molecular Biology. 348: Elsevier; 2019. p. 179-215. [DOI:10.1016/bs.ircmb.2019.07.008]
75. Kubota K, Moriyama M, Furukawa S, Rafiul HA, Maruse Y, Jinno T, et al. CD163+ CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Scientific reports. 2017;7(1):1-12. [DOI:10.1038/s41598-017-01661-z]
76. Wang J, Sun J, Liu LN, Flies DB, Nie X, Toki M, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nature medicine. 2019;25(4):656. [DOI:10.1038/s41591-019-0374-x]
77. Cao G, Xiao Z, Yin Z. Normalization cancer immunotherapy: blocking Siglec-15! Signal transduction and targeted therapy. 2019;4:10. [DOI:10.1038/s41392-019-0045-x]
78. Lau J, Cheung J, Navarro A, Lianoglou S, Haley B, Totpal K, et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nature communications. 2017;8:14572. [DOI:10.1038/ncomms14572]
79. Umezu D, Okada N, Sakoda Y, Adachi K, Ojima T, Yamaue H, et al. Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunology, Immunotherapy. 2019;68(2):201-11. [DOI:10.1007/s00262-018-2263-4]
80. Smith TD, Tse MJ, Read EL, Liu WF. Regulation of macrophage polarization and plasticity by complex activation signals. Integrative Biology. 2016;8(9):946-55. [DOI:10.1039/c6ib00105j]
81. Martin MD, Matrisian LM. The other side of MMPs: protective roles in tumor progression. Cancer metastasis reviews. 2007;26(3-4):717-24. [DOI:10.1007/s10555-007-9089-4]
82. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52-67. [DOI:10.1016/j.cell.2010.03.015]
83. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez VE, Lara-Riegos J, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Frontiers in oncology. 2019;9:1370. [DOI:10.3389/fonc.2019.01370]
84. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. Journal of leukocyte biology. 2011;89(4):557-63. [DOI:10.1189/jlb.0710409]
85. Ley K. M1 means kill; M2 means heal. The Journal of Immunology. 2017;199(7):2191-3. [DOI:10.4049/jimmunol.1701135]
86. Heusinkveld M, van der Burg SH. Identification and manipulation of tumor associated macrophages in human cancers. Journal of translational medicine. 2011;9:216. [DOI:10.1186/1479-5876-9-216]
87. Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH. Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. Journal of leukocyte biology. 2006;79(2):285-93. [DOI:10.1189/jlb.0105015]
88. Jeong H, Hwang I, Kang SH, Shin HC, Kwon SY. Tumor-associated macrophages as potential prognostic biomarkers of invasive breast cancer. Journal of breast cancer. 2019;22(1):38-51. [DOI:10.4048/jbc.2019.22.e5]
89. de Gramont A, Van Cutsem E, Schmoll H-J, Tabernero J, Clarke S, Moore MJ, et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. The lancet oncology. 2012;13(12):1225-33. [DOI:10.1016/S1470-2045(12)70509-0]
90. Wang N, Jain RK, Batchelor TT. New directions in anti-angiogenic therapy for glioblastoma. Neurotherapeutics. 2017;14(2):321-32. [DOI:10.1007/s13311-016-0510-y]
91. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nature communications. 2016;7(1):1-13. [DOI:10.1038/ncomms12680]
92. Zarrin B, Zarifi F, Vaseghi G, Javanmard SH. Acquired tumor resistance to antiangiogenic therapy: mechanisms at a glance. Journal of Research in Medical Sciences: the Official Journal of Isfahan University of Medical Sciences. 2017;22. [DOI:10.4103/jrms.JRMS_182_17]
93. Luo Y, Zhou H, Krueger J, Kaplan C, Lee S-H, Dolman C, et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. The Journal of clinical investigation. 2006;116(8):2132-41. [DOI:10.1172/JCI27648]
94. Bak SP, Walters JJ, Takeya M, Conejo-Garcia JR, Berwin BL. Scavenger receptor-A–targeted leukocyte depletion inhibits peritoneal ovarian tumor progression. Cancer research. 2007;67(10):4783-9. [DOI:10.1158/0008-5472.CAN-06-4410]
95. Roth F, Adriana C, Vella JL, Zoso A, Inverardi L, Serafini P. Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression. Cancer research. 2012;72(6):1373-83. [DOI:10.1158/0008-5472.CAN-11-2772]
96. Pulaski HL, Spahlinger G, Silva IA, McLean K, Kueck AS, Reynolds RK, et al. Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer. Journal of translational medicine. 2009;7(1):49. [DOI:10.1186/1479-5876-7-49]
97. Nagai T, Tanaka M, Tsuneyoshi Y, Xu B, Michie SA, Hasui K, et al. Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor β. Cancer immunology, immunotherapy. 2009;58(10):1577-86. [DOI:10.1007/s00262-009-0667-x]
98. Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer cell. 2013;23(2):249-62. [DOI:10.1016/j.ccr.2013.01.008]
99. Zeisberger S, Odermatt B, Marty C, Zehnder-Fjällman A, Ballmer-Hofer K, Schwendener R. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. British journal of cancer. 2006;95(3):272-81. [DOI:10.1038/sj.bjc.6603240]
100. Cieslewicz M, Tang J, Jonathan LY, Cao H, Zavaljevski M, Motoyama K, et al. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proceedings of the National Academy of Sciences. 2013;110(40):15919-24. [DOI:10.1073/pnas.1312197110]
101. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222-5. [DOI:10.1038/nature10138]
102. Gazzaniga S, Bravo AI, Guglielmotti A, Van Rooijen N, Maschi F, Vecchi A, et al. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. Journal of Investigative Dermatology. 2007;127(8):2031-41. [DOI:10.1038/sj.jid.5700827]
103. Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer research. 2007;67(19):9417-24. [DOI:10.1158/0008-5472.CAN-07-1286]
104. Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, Carpenter D, et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clinical cancer research. 2013;19(13):3404-15. [DOI:10.1158/1078-0432.CCR-13-0525]
105. Choi H-J, Choi H-J, Chung T-W, Ha K-T. Luteolin inhibits recruitment of monocytes and migration of Lewis lung carcinoma cells by suppressing chemokine (C–C motif) ligand 2 expression in tumor-associated macrophage. Biochemical and biophysical research communications. 2016;470(1):101-6. [DOI:10.1016/j.bbrc.2016.01.002]
106. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer research. 2013;73(3):1128-41. [DOI:10.1158/0008-5472.CAN-12-2731]
107. Paulus P, Stanley ER, Schäfer R, Abraham D, Aharinejad S. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer research. 2006;66(8):4349-56. [DOI:10.1158/0008-5472.CAN-05-3523]
108. Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schäfer R, et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer research. 2004;64(15):5378-84. [DOI:10.1158/0008-5472.CAN-04-0961]
109. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer cell. 2014;25(6):846-59. [DOI:10.1016/j.ccr.2014.05.016]
110. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature medicine. 2013;19(10):1264. [DOI:10.1038/nm.3337]
111. Wang Q, Cheng F, Ma T-t, Xiong H-Y, Li Z-W, Xie C-L, et al. Interleukin-12 inhibits the hepatocellular carcinoma growth by inducing macrophage polarization to the M1-like phenotype through downregulation of Stat-3. Molecular and cellular biochemistry. 2016;415(1-2):157-68. [DOI:10.1007/s11010-016-2687-0]
112. Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proceedings of the National Academy of Sciences. 2012;109(6):2066-71. [DOI:10.1073/pnas.1113099109]
113. Lizotte PH, Baird JR, Stevens CA, Lauer P, Green WR, Brockstedt DG, et al. Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis. Oncoimmunology. 2014;3(5):e28926. [DOI:10.4161/onci.28926]
114. Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in cancer therapy: renaissance of an old concept. International journal of microbiology. 2016;2016. [DOI:10.1155/2016/8451728]
115. Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E, et al. Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. International journal of cancer. 2009;125(2):367-73. [DOI:10.1002/ijc.24401]
116. Begnini K, Buss J, Collares T, Seixas F. Recombinant Mycobacterium bovis BCG for immunotherapy in nonmuscle invasive bladder cancer. Applied microbiology and biotechnology. 2015;99(9):3741-54. [DOI:10.1007/s00253-015-6495-3]
117. Banerjee S, Halder K, Ghosh S, Bose A, Majumdar S. The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ. Oncoimmunology. 2015;4(3):e995559. [DOI:10.1080/2162402X.2014.995559]
118. Coscia M, Quaglino E, Iezzi M, Curcio C, Pantaleoni F, Riganti C, et al. Zoledronic acid repolarizes tumour‐associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. Journal of cellular and molecular medicine. 2010;14(12):2803-15. [DOI:10.1111/j.1582-4934.2009.00926.x]
119. Zhang X, Tian W, Cai X, Wang X, Dang W, Tang H, et al. Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PloS one. 2013;8(6):e65896. [DOI:10.1371/journal.pone.0065896]
120. Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer cell. 2011;19(1):31-44. [DOI:10.1016/j.ccr.2010.11.009]
121. Downey CM, Aghaei M, Schwendener RA, Jirik FR. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2′ 3′-cGAMP, induces M2 macrophage repolarization. PloS one. 2014;9(6):e99988. [DOI:10.1371/journal.pone.0099988]
122. Wang C, Hu Z, Zhu Z, Zhang X, Wei Z, Zhang Y, et al. The MSHA strain of Pseudomonas aeruginosa (PA-MSHA) inhibits gastric carcinoma progression by inducing M1 macrophage polarization. Tumor Biology. 2016;37(5):6913-21. [DOI:10.1007/s13277-015-4451-6]
123. Horlad H, Fujiwara Y, Takemura K, Ohnishi K, Ikeda T, Tsukamoto H, et al. Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid‐derived suppressor cells. Molecular nutrition & food research. 2013;57(6):1046-54. [DOI:10.1002/mnfr.201200610]
124. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer research. 2005;65(8):3437-46. [DOI:10.1158/0008-5472.CAN-04-4262]
125. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science (New York, NY). 2011;331(6024):1612-6. [DOI:10.1126/science.1198443]
126. Tan H, Wang N, Man K, Tsao S, Che C, Feng Y. Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin. Cell death & disease. 2015;6(10):e1942. [DOI:10.1038/cddis.2015.271]
127. Fujiwara Y, Komohara Y, Ikeda T, Takeya M. Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription‐3 and nuclear factor‐kappa B in tumor cells and tumor‐associated macrophages. Cancer science. 2011;102(1):206-11. [DOI:10.1111/j.1349-7006.2010.01772.x]
128. Chakraborty P, Chatterjee S, Ganguly A, Saha P, Adhikary A, Das T, et al. Reprogramming of TAM toward proimmunogenic type through regulation of MAP kinases using a redox‐active copper chelate. Journal of leukocyte biology. 2012;91(4):609-19. [DOI:10.1189/jlb.0611287]
129. Squadrito ML, Pucci F, Magri L, Moi D, Gilfillan GD, Ranghetti A, et al. miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell reports. 2012;1(2):141-54. [DOI:10.1016/j.celrep.2011.12.005]
130. Gao J, Wang D, Liu D, Liu M, Ge Y, Jiang M, et al. Tumor necrosis factor–related apoptosis-inducing ligand induces the expression of proinflammatory cytokines in macrophages and re-educates tumor-associated macrophages to an antitumor phenotype. Molecular biology of the cell. 2015;26(18):3178-89. [DOI:10.1091/mbc.E15-04-0209]
131. Cai X, Yin Y, Li N, Zhu D, Zhang J, Zhang C-Y, et al. Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. Journal of molecular cell biology. 2012;4(5):341-3. [DOI:10.1093/jmcb/mjs044]
132. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. The Journal of experimental medicine. 2011;208(6):1189-201. [DOI:10.1084/jem.20101823]
133. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in pharmacological sciences. 2009;30(11):592-9. [DOI:10.1016/j.tips.2009.08.004]
134. Alizadeh D, Zhang L, Schluep T, Badie B. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(2):382-90. [DOI:10.1016/j.nano.2009.10.001]
135. Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F, et al. Monocytic CCR2+ myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer research. 2012;72(4):876-86. [PubMed]
136. Bonapace L, Coissieux M-M, Wyckoff J, Mertz KD, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515(7525):130-3. [DOI:10.1038/nature13862]
137. Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. Trends in immunology. 2019;40(4):310-27. [DOI:10.1016/j.it.2019.02.003]
138. Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539(7629):437-42. [DOI:10.1038/nature19834]
139. Kaneda MM, Cappello P, Nguyen AV, Ralainirina N, Hardamon CR, Foubert P, et al. Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer discovery. 2016;6(8):870-85. [DOI:10.1158/2159-8290.CD-15-1346]
140. Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B, et al. Bruton tyrosine kinase–dependent immune cell cross-talk drives pancreas cancer. Cancer discovery. 2016;6(3):270-85. [DOI:10.1158/2159-8290.CD-15-0827]
141. Lum HD, Buhtoiarov IN, Schmidt BE, Berke G, Paulnock DM, Sondel PM, et al. In vivo CD40 ligation can induce T cell‐independent antitumor effects that involve macrophages. Journal of leukocyte biology. 2006;79(6):1181-92. [DOI:10.1189/jlb.0405191]
142. Hoves S, Ooi C-H, Wolter C, Sade H, Bissinger S, Schmittnaegel M, et al. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. Journal of Experimental Medicine. 2018;215(3):859-76. [DOI:10.1084/jem.20171440]
143. Territo M, Cline MJ. Macrophages and their disorders in man. Immunobiology of the Macrophage: Elsevier; 1976. p. 593-616. [DOI:10.1016/B978-0-12-514550-3.50029-3]
144. Siegel RL, Miller KD. Cancer statistics, 2020. CA: a cancer journal for clinicians. 2020;70(1):7-30. [DOI:10.3322/caac.21590]
145. Yang L, Zhang Y. Tumor-associated macrophages, potential targets for cancer treatment. Biomarker research. 2017;5(1):25. [DOI:10.1186/s40364-017-0106-7]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Modern Medical Laboratory Journal