Volume 4, Issue 2 (Summer-Fall 2021)                   Mod Med Lab J 2021, 4(2): 1-15 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadifar M, Jarban Z, Gordan M M, Reihani S. A comparative study of SOX9, HOXA10 and OCT4 gene expression in human and Zebrafish reproduction and embryogenesis. Mod Med Lab J 2021; 4 (2) :1-15
URL: http://modernmedlab.com/article-1-97-en.html
Abstract:   (1167 Views)
So far, many studies have been conducted on the importance of expressing different genes in humans and zebrafish. In this regard, the expression of OCT4, HOX and SOX genes as influential genes in the embryonic period is very thought-provoking. At different embryonic stages, including morula, middle blastula, gastrula, and segmentation, the expression of these genes is very important in the growth, immunity, tissue repair, and viability of different cells. The aim of this study was to investigate the expression of common genes between humans and zebrafish in the embryonic period and their efficiency in different parts of the body.
Full-Text [PDF 745 kb]   (579 Downloads)    
Type of Study: Review | Subject: Biology

1. Guth SI, Wegner M. Having it both ways: Sox protein function between conservation and innovation. Cell Mol Life Sci. 2008;65(19):3000-18. [DOI:10.1007/s00018-008-8138-7]
2. Alankarage D, Lavery R, Svingen T, Kelly S, Ludbrook L, Bagheri-Fam S, et al. SOX9 regulates expression of the male fertility gene Ets variant factor 5 (ETV5) during mammalian sex development. Int J Biochem Cell Biol. 2016;79:41-51. [DOI:10.1016/j.biocel.2016.08.005]
3. Aguilar-Medina M, Avendano-Felix M, Lizarraga-Verdugo E, Bermudez M, Romero-Quintana JG, Ramos-Payan R, et al. SOX9 Stem-Cell Factor: Clinical and Functional Relevance in Cancer. J Oncol. 2019;2019:6754040. [DOI:10.1155/2019/6754040]
4. Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, et al. The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis. 2014;1(2):149-61. [DOI:10.1016/j.gendis.2014.09.004]
5. Jafaryazdi R, Shojaei A. Disorders of sex developement: involved genes and genetic counseling. Razi Journal of Medical Sciences. 2018;25(2):30-48. [Article]
6. Arboleda VA, Sandberg DE, Vilain E. DSDs: genetics, underlying pathologies and psychosexual differentiation. Nat Rev Endocrinol. 2014;10(10):603-15. [DOI:10.1038/nrendo.2014.130]
7. Völkel P, Le Faou P, Vandamme J, Pira D, Angrand P-O. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription. Epigenetics. 2012;7(5):482-91. [DOI:10.4161/epi.19741]
8. Cermik D, Karaca M, Taylor HS. HOXA10 expression is repressed by progesterone in the myometrium: differential tissue-specific regulation of HOX gene expression in the reproductive tract. J Clin Endocrinol Metab. 2001;86(7):3387-92. [DOI:10.1210/jcem.86.7.7675]
9. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276(5688):565-70. [Article]
10. Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997;57(6):1338-45. [DOI:10.1095/biolreprod57.6.1338]
11. Zanatta A, Rocha AM, Carvalho FM, Pereira RM, Taylor HS, Motta EL, et al. The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: a review. J Assist Reprod Genet. 2010;27(12):701-10. [DOI:10.1007/s10815-010-9471-y]
12. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101(7):1379-84. [DOI:10.1172/JCI1057]
13. She S, Wei Q, Kang B, Wang YJ. Cell cycle and pluripotency: Convergence on octamer‑binding transcription factor 4 (Review). Mol Med Rep. 2017;16(5):6459-66. [DOI:10.3892/mmr.2017.7489]
14. Shi G, Jin Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther. 2010;1(5):39. [DOI:10.1186/scrt39]
15. Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell. 2007;1(4):403-15. [DOI:10.1016/j.stem.2007.07.020]
16. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379-91. [DOI:10.1016/S0092-8674(00)81769-9]
17. Zafarana G, Avery SR, Avery K, Moore HD, Andrews PW. Specific knockdown of OCT4 in human embryonic stem cells by inducible short hairpin RNA interference. Stem Cells. 2009;27(4):776-82. [DOI:10.1002/stem.5]
18. Li L, Sun L, Gao F, Jiang J, Yang Y, Li C, et al. Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation. Proc Natl Acad Sci U S A. 2010;107(4):1402-7. [DOI:10.1073/pnas.0905657107]
19. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24(4):372-6. [DOI:10.1038/74199]
20. Ostrer H. Disorders of sex development (DSDs): an update. J Clin Endocrinol Metab. 2014;99(5):1503-9. [DOI:10.1210/jc.2013-3690]
21. Katoh-Fukui Y, Miyabayashi K, Komatsu T, Owaki A, Baba T, Shima Y, et al. Cbx2, a Polycomb Group Gene, Is Required for Sry Gene Expression in Mice. Endocrinology. 2012;153(2):913-24. [DOI:10.1210/en.2011-1055]
22. Du H, Taylor HS. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility. Cold Spring Harb Perspect Med. 2015;6(1):a023002-a. [DOI:10.1101/cshperspect.a023002]
23. Doherty LF, Kwon HE, Taylor HS. Regulation of tryptophan 2,3-dioxygenase by HOXA10 enhances embryo viability through serotonin signaling. Am J Physiol Endocrinol Metab. 2011;300(1):E86-93. [DOI:10.1152/ajpendo.00439.2010]
24. Taylor HS, Igarashi P, Olive DL, Arici A. Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J Clin Endocrinol Metab. 1999;84(3):1129-35. [DOI:10.1210/jcem.84.3.5573]
25. Troy PJ, Daftary GS, Bagot CN, Taylor HS. Transcriptional repression of peri-implantation EMX2 expression in mammalian reproduction by HOXA10. Mol Cell Biol. 2003;23(1):1-13. [DOI:10.1128/MCB.23.1.1-13.2003]
26. Daftary GS, Troy PJ, Bagot CN, Young SL, Taylor HS. Direct regulation of beta3-integrin subunit gene expression by HOXA10 in endometrial cells. Mol Endocrinol. 2002;16(3):571-9. [DOI:10.1210/mend.16.3.0792]
27. Vitiello D, Pinard R, Taylor HS. Gene expression profiling reveals putative HOXA10 downstream targets in the periimplantation mouse uterus. Reprod Sci. 2008;15(5):529-35. [DOI:10.1177/1933719108316911]
28. Wu HH, Wang NM, Lin CY, Tsai HD. Genetic alterations of HOXA10 and their effect on the severity of endometriosis in a Taiwanese population. Reprod Biomed Online. 2008;16(3):416-24. [DOI:10.1016/S1472-6483(10)60604-9]
29. Benson GV, Nguyen TH, Maas RL. The expression pattern of the murine Hoxa-10 gene and the sequence recognition of its homeodomain reveal specific properties of Abdominal B-like genes. Mol Cell Biol. 1995;15(3):1591-601. [DOI:10.1128/MCB.15.3.1591]
30. Hur H, Lee JY, Yun HJ, Park BW, Kim MH. Analysis of HOX gene expression patterns in human breast cancer. Mol Biotechnol. 2014;56(1):64-71. [DOI:10.1007/s12033-013-9682-4]
31. Andersson KL, Bussani C, Fambrini M, Polverino V, Taddei GL, Gemzell-Danielsson K, et al. DNA methylation of HOXA10 in eutopic and ectopic endometrium. Human Reproduction. 2014;29(9):1906-11. [DOI:10.1093/humrep/deu161]
32. Alizadeh Z, Faramarzi S, Saidijam M, Alizamir T, Esna-Ashari F, Shabab N, et al. Effect of intramural myomectomy on endometrial HOXA10 and HOXA11 mRNA expression at the time of implantation window. Iran J Reprod Med. 2013;11(12):983-8. [Article]
33. Salih SM, Taylor HS. HOXA10 gene expression in human fallopian tube and ectopic pregnancy. Am J Obstet Gynecol. 2004;190(5):1404-6. [DOI:10.1016/j.ajog.2004.01.066]
34. Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature. 1995;374(6521):460-3. [DOI:10.1038/374460a0]
35. Bagot CN, Troy PJ, Taylor HS. Alteration of maternal Hoxa10 expression by in vivo gene transfection affects implantation. Gene Ther. 2000;7(16):1378-84. [DOI:10.1038/sj.gt.3301245]
36. Kopp JL, Ormsbee BD, Desler M, Rizzino A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells. 2008;26(4):903-11. [DOI:10.1634/stemcells.2007-0951]
37. Shimozaki K, Nakashima K, Niwa H, Taga T. Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development. 2003;130(11):2505-12. [DOI:10.1242/dev.00476]
38. Stefanovic S, Abboud N, Désilets S, Nury D, Cowan C, Pucéat M. Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. J Cell Biol. 2009;186(5):665-73. [DOI:10.1083/jcb.200901040]
39. Zeineddine D, Hammoud AA, Mortada M, Boeuf H. The Oct4 protein: more than a magic stemness marker. Am J Stem Cells. 2014;3(2):74-82. [Article]
40. Fluckiger A-C, Marcy G, Marchand M, Négre D, Cosset F-L, Mitalipov S, et al. Cell cycle features of primate embryonic stem cells. Stem cells (Dayton, Ohio). 2006;24(3):547-56. [DOI:10.1634/stemcells.2005-0194]
41. Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, et al. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol. 2006;209(3):883-93. [DOI:10.1002/jcp.20776]
42. Pauklin S, Vallier L. The cell-cycle state of stem cells determines cell fate propensity. Cell. 2013;155(1):135-47. [DOI:10.1016/j.cell.2013.08.031]
43. Zhao A, Yang L, Ma K, Sun M, Li L, Huang J, et al. Overexpression of cyclin D1 induces the reprogramming of differentiated epidermal cells into stem cell-like cells. Cell Cycle. 2016;15(5):644-53. [DOI:10.1080/15384101.2016.1146838]
44. Su C. Survivin in survival of hepatocellular carcinoma. Cancer Lett. 2016;379(2):184-90. [DOI:10.1016/j.canlet.2015.06.016]
45. Han SM, Han SH, Coh YR, Jang G, Chan Ra J, Kang SK, et al. Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Exp Mol Med. 2014;46(6):e101. [DOI:10.1038/emm.2014.28]
46. Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 2008;28(20):6426-38. [DOI:10.1128/MCB.00359-08]
47. Lin S-L, Ying S-Y. Mechanism and Method for Generating Tumor-Free iPS Cells Using Intronic MicroRNA miR-302 Induction. Methods Mol Biol. 2018;1733:265-82. [DOI:10.1007/978-1-62703-083-0_23]
48. Sun LT, Yamaguchi S, Hirano K, Ichisaka T, Kuroda T, Tada T. Nanog co-regulated by Nodal/Smad2 and Oct4 is required for pluripotency in developing mouse epiblast. Developmental Biology. 2014;392(2):182-92. [DOI:10.1016/j.ydbio.2014.06.002]
49. Li P, Ma X, Adams IR, Yuan P. A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death & Disease. 2015;6(1):e1588-e. [DOI:10.1038/cddis.2014.551]
50. Filipczyk AA, Laslett AL, Mummery C, Pera MF. Differentiation is coupled to changes in the cell cycle regulatory apparatus of human embryonic stem cells. Stem Cell Res. 2007;1(1):45-60. [DOI:10.1016/j.scr.2007.09.002]
51. Bárta T, Vinarský V, Holubcová Z, Dolezalová D, Verner J, Pospísilová S, et al. Human embryonic stem cells are capable of executing G1/S checkpoint activation. Stem Cells. 2010;28(7):1143-52. [DOI:10.1002/stem.451]
52. Deshpande AM, Dai YS, Kim Y, Kim J, Kimlin L, Gao K, et al. Cdk2ap1 is required for epigenetic silencing of Oct4 during murine embryonic stem cell differentiation. J Biol Chem. 2009;284(10):6043-7. [DOI:10.1074/jbc.C800158200]
53. Kallas A, Pook M, Trei A, Maimets T. Assessment of the Potential of CDK2 Inhibitor NU6140 to Influence the Expression of Pluripotency Markers NANOG, OCT4, and SOX2 in 2102Ep and H9 Cells. Int J Cell Biol. 2014;2014:280638. [DOI:10.1155/2014/280638]
54. Ouyang J, Yu W, Liu J, Zhang N, Florens L, Chen J, et al. Cyclin-dependent kinase-mediated Sox2 phosphorylation enhances the ability of Sox2 to establish the pluripotent state. J Biol Chem. 2015;290(37):22782-94. [DOI:10.1074/jbc.M115.658195]
55. Koo BS, Lee SH, Kim JM, Huang S, Kim SH, Rho YS, et al. Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene. 2015;34(18):2317-24. [DOI:10.1038/onc.2014.174]
56. Kalaszczynska I, Geng Y, Iino T, Mizuno S, Choi Y, Kondratiuk I, et al. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell. 2009;138(2):352-65. [DOI:10.1016/j.cell.2009.04.062]
57. Gonzales KA, Liang H, Lim YS, Chan YS, Yeo JC, Tan CP, et al. Deterministic Restriction on Pluripotent State Dissolution by Cell-Cycle Pathways. Cell. 2015;162(3):564-79. [DOI:10.1016/j.cell.2015.07.001]
58. Neganova I, Tilgner K, Buskin A, Paraskevopoulou I, Atkinson SP, Peberdy D, et al. CDK1 plays an important role in the maintenance of pluripotency and genomic stability in human pluripotent stem cells. Cell Death Dis. 2014;5(11):e1508. [DOI:10.1038/cddis.2014.464]
59. Van Hoof D, Muñoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, et al. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell. 2009;5(2):214-26. [DOI:10.1016/j.stem.2009.05.021]
60. Li L, Wang J, Hou J, Wu Z, Zhuang Y, Lu M, et al. Cdk1 interplays with Oct4 to repress differentiation of embryonic stem cells into trophectoderm. FEBS Letters. 2012;586(23):4100-7. [DOI:10.1016/j.febslet.2012.10.030]
61. Van Oudenhove JJ, Grandy RA, Ghule PN, Del Rio R, Lian JB, Stein JL, et al. Lineage-Specific Early Differentiation of Human Embryonic Stem Cells Requires a G2 Cell Cycle Pause. Stem Cells. 2016;34(7):1765-75. [DOI:10.1002/stem.2352]
62. Zhao R, Deibler RW, Lerou PH, Ballabeni A, Heffner GC, Cahan P, et al. A nontranscriptional role for Oct4 in the regulation of mitotic entry. Proc Natl Acad Sci U S A. 2014;111(44):15768-73. [DOI:10.1073/pnas.1417518111]
63. Huskey NE, Guo T, Evason KJ, Momcilovic O, Pardo D, Creasman KJ, et al. CDK1 inhibition targets the p53-NOXA-MCL1 axis, selectively kills embryonic stem cells, and prevents teratoma formation. Stem Cell Reports. 2015;4(3):374-89. [DOI:10.1016/j.stemcr.2015.01.019]
64. Lee SH, Oh SY, Do SI, Lee HJ, Kang HJ, Rho YS, et al. SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br J Cancer. 2014;111(11):2122-30. [DOI:10.1038/bjc.2014.528]
65. Tompkins DH, Besnard V, Lange AW, Keiser AR, Wert SE, Bruno MD, et al. Sox2 activates cell proliferation and differentiation in the respiratory epithelium. Am J Respir Cell Mol Biol. 2011;45(1):101-10. [DOI:10.1165/rcmb.2010-0149OC]
66. Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445(7128):671-5. [DOI:10.1038/nature05515]
67. Awe JP, Crespo AV, Li Y, Kiledjian M, Byrne JA. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells. Stem Cell Research & Therapy. 2013;4(1):15. [DOI:10.1186/scrt163]
68. Yap SP, Xing X, Kraus P, Sivakamasundari V, Chan HY, Lufkin T. Generation of mice with a novel conditional null allele of the Sox9 gene. Biotechnol Lett. 2011;33(8):1551-8. [DOI:10.1007/s10529-011-0608-6]
69. Aguilar-Medina M, Avendaño-Félix M, Lizárraga-Verdugo E, Bermúdez M, Romero-Quintana JG, Ramos-Payan R, et al. SOX9 Stem-Cell Factor: Clinical and Functional Relevance in Cancer. Journal of Oncology. 2019;2019:6754040. [DOI:10.1155/2019/6754040]
70. Taylor HS, Igarashi P, Olive DL, Arici A. Sex Steroids Mediate HOXA11 Expression in the Human Peri-Implantation Endometrium1. The Journal of Clinical Endocrinology & Metabolism. 1999;84(3):1129-35. [DOI:10.1210/jcem.84.3.5573]
71. Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development. 1996;122(9):2687-96. [DOI:10.1242/dev.122.9.2687]
72. Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dollé P. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development. 1997;124(23):4781-91. [DOI:10.1242/dev.124.23.4781]
73. Giudice LC. Endometrium in PCOS: Implantation and predisposition to endocrine CA. Best Pract Res Clin Endocrinol Metab. 2006;20(2):235-44. [DOI:10.1016/j.beem.2006.03.005]
74. Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(1):238-43. [DOI:10.1210/jc.2002-021072]
75. Pan GJ, Chang ZY, Schöler HR, Pei D. Stem cell pluripotency and transcription factor Oct4. Cell Res. 2002;12(5-6):321-9. [DOI:10.1038/sj.cr.7290134]
76. Yokoi H, Yan Y-L, Miller MR, BreMiller RA, Catchen JM, Johnson EA, et al. Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation. Developmental biology. 2009;329(1):1-15. [DOI:10.1016/j.ydbio.2009.01.002]
77. Chiang EF, Pai CI, Wyatt M, Yan YL, Postlethwait J, Chung B. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol. 2001;231(1):149-63. [DOI:10.1006/dbio.2000.0129]
78. Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet. 2004;20(10):481-90. [DOI:10.1016/j.tig.2004.08.001]
79. Yan YL, Willoughby J, Liu D, Crump JG, Wilson C, Miller CT, et al. A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development. 2005;132(5):1069-83. [DOI:10.1242/dev.01674]
80. Ihanamäki T, Säämänen AM, Suominen J, Pelliniemi LJ, Harley V, Vuorio E, et al. Expression of Sox9 and type IIA procollagen during ocular development and aging in transgenic Del1 mice with a mutation in the type II collagen gene. Eur J Ophthalmol. 2002;12(6):450-8. [DOI:10.1177/112067210201200602]
81. Wang J, Wu Y, Zhao F, Wu Y, Dong W, Zhao J, et al. Fgf-Signaling-Dependent Sox9a and Atoh1a Regulate Otic Neural Development in Zebrafish. The Journal of Neuroscience. 2015;35(1):234. [DOI:10.1523/JNEUROSCI.3353-14.2015]
82. Yan Y-L, Miller CT, Nissen R, Singer A, Liu D, Kirn A, et al. A zebrafish sox9 gene required for cartilage morphogenesis. Development. 2002;129(21):5065-79. [DOI:10.1242/dev.129.21.5065]
83. Prince VE, Joly L, Ekker M, Ho RK. Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development. 1998;125(3):407-20. [DOI:10.1242/dev.125.3.407]
84. Kessel M. Respecification of vertebral identities by retinoic acid. Development. 1992;115(2):487-501. [DOI:10.1242/dev.115.2.487]
85. Sordino P, Duboule D, Kondo T. Zebrafish Hoxa and Evx-2 genes: cloning, developmental expression and implications for the functional evolution of posterior Hox genes. Mech Dev. 1996;59(2):165-75. [DOI:10.1016/0925-4773(96)00587-4]
86. Onichtchouk D, Geier F, Polok B, Messerschmidt DM, Mössner R, Wendik B, et al. Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development. Mol Syst Biol. 2010;6:354. [DOI:10.1038/msb.2010.9]
87. اسماعیلی, کلباسی, بهاروند, حسین, حسنی, سیده نفیسه. مطالعه بیان ژن‌های پرتوانی در مراحل مختلف تکوین جنینی ماهی گورخری (oirer oinaD). نشریه علمی فیزیولوژی و بیوتکنولوژی 2015; 3(1):93-111آبزیان. [Article]
88. Kim H, Jang H, Kim TW, Kang BH, Lee SE, Jeon YK, et al. Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency. Stem Cells. 2015;33(9):2699-711. [DOI:10.1002/stem.2073]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Modern Medical Laboratory Journal