Volume 4, Issue 1 (Winter-Spring 2021)                   Mod Med Lab J 2021, 4(1): 39-51 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaei N, Akbarzadeh I, Kazemi S, Montazeri L, Zarkesh I, Hossein-Khannazer N, et al . Smart Materials in Regenerative Medicine. Mod Med Lab J. 2021; 4 (1) :39-51
URL: http://modernmedlab.com/article-1-96-en.html
Abstract:   (326 Views)
Up to now, enormous smart materials have been engineered with physical stimulators such as temperature, electric field, magnetic field, light, ultrasound, mechanical stimuli, chemical stimulators such as pH and reduction, or biological stimulators such as antigen glucose and enzyme in regenerative medicine. Smart materials have numerous properties, such as responding to controlled drug release, “ON-OFF” switch activities, prolonged blood circulation, ability to specific triggers, enhanced diagnostic accuracy, increased tumor accumulation, and therapeutic efficacy. In this review, notable research achievements of smart materials responsive to various stimuli involving responsive mechanisms and applications are summarized and discussed separately.
Full-Text [PDF 975 kb]   (121 Downloads)    
Type of Study: Brief report | Subject: Regenerative Medicine

1. Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. National Acad Sciences. 2015; 112(47): 14452-9. [DOI:10.1073/pnas.1508520112]
2. Honey Priya J, Rijo J, Anju A, Anoop KR. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm. Sin. B. 2014; 4(2):120–127. [DOI:10.1016/j.apsb.2014.02.005]
3. Peng J, Qi T, Liao J, Fan M, Luo F, Li H, et al. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems. Nanoscale. 2012; 4:2694–2704. [DOI:10.1039/C2NR30147D]
4. Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases. 2012; 7(1):9. [DOI:10.1007/s13758-011-0009-3]
5. Clark EA, Lipson JE. LCST and UCST behavior in polymer solutions and blends. Polymer. 2012; 53(2):536-45. [DOI:10.1016/j.polymer.2011.11.045]
6. Jones DS, Lorimer CP, McCoy CP, Gorman SP. Characterization of the physicochemical, antimicrobial, and drug release properties of thermoresponsive hydrogel copolymers designed for medical device applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2008; 85(2):417-26. [DOI:10.1002/jbm.b.30960]
7. Otto S, Marina PF, Zhou F, Blencowe A. Thermoresponsive polysaccharides with tunable thermoresponsive properties via functionalisation with alkylamide groups. Carbohydrate Polymers. 2021; 254:117280. [DOI:10.1016/j.carbpol.2020.117280]
8. Wei W, Hu X, Qi X, Yu H, Liu Y, Li J, Zhang J, Dong W. A novel thermo-responsive hydrogel based on salecan and poly (N-isopropylacrylamide): Synthesis and characterization. Colloids and Surfaces B: Biointerfaces. 2015;125:1-11. [DOI:10.1016/j.colsurfb.2014.10.057]
9. Das D, Ghosh P, Ghosh A, Haldar C, Dhara S, Panda AB, Pal S. Stimulus-responsive, biodegradable, biocompatible, covalently cross-linked hydrogel based on dextrin and poly (N-isopropylacrylamide) for in vitro/in vivo controlled drug release. ACS applied materials & interfaces. 2015; 7(26):14338-51. [DOI:10.1021/acsami.5b02975]
10. Dessì M, Borzacchiello A, Mohamed TH, Abdel‐Fattah WI, Ambrosio L. Novel biomimetic thermosensitive β‐tricalcium phosphate/chitosan‐based hydrogels for bone tissue engineering. Journal of Biomedical Materials Research Part A. 2013; 101(10):2984-93. [DOI:10.1002/jbm.a.34592]
11. Peng Y, Li J, Li J, Fei Y, Dong J, Pan W. Optimization of thermosensitive chitosan hydrogels for the sustained delivery of venlafaxine hydrochloride. International journal of pharmaceutics. 2013; 441(1-2):482-90. [DOI:10.1016/j.ijpharm.2012.11.005]
12. Singh AK, Bhadauria AS, Kumar P, Bera H, Saha S. Bioactive and drug-delivery potentials of polysaccharides and their derivatives. InPolysaccharide Carriers for Drug Delivery 2019 Jan 1 (pp. 19-48). Woodhead Publishing. [DOI:10.1016/B978-0-08-102553-6.00002-7]
13. Dastidar DG, Chakrabarti G. Thermoresponsive Drug Delivery Systems, Characterization and Application. InApplications of Targeted Nano Drugs and Delivery Systems 2019 Jan 1 (pp. 133-155). Elsevier. [DOI:10.1016/B978-0-12-814029-1.00006-5]
14. Xu FJ, Zhu Y, Liu FS, Nie J, Ma J, Yang WT. Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly (N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjugate chemistry. 2010; 21(3):456-64. [DOI:10.1021/bc900337p]
15. Liu W, Zhang B, Lu WW, Li X, Zhu D, De Yao K, Wang Q, Zhao C, Wang C. A rapid temperature-responsive sol–gel reversible poly (N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials. 2004; 25(15):3005-12. [DOI:10.1016/j.biomaterials.2003.09.077]
16. Wei X, Gong C, Gou M, Fu S, Guo Q, Shi S, Luo F, Guo G, Qiu L, Qian Z. Biodegradable poly (ɛ-caprolactone)–poly (ethylene glycol) copolymers as drug delivery system. International journal of pharmaceutics. 2009; 381(1):1-8. [DOI:10.1016/j.ijpharm.2009.07.033]
17. Loh XJ, Yee BJ, Chia FS. Sustained delivery of paclitaxel using thermogelling poly (PEG/PPG/PCL urethane) s for enhanced toxicity against cancer cells. Journal of Biomedical Materials Research Part A. 2012; 100(10):2686-94. [DOI:10.1002/jbm.a.34198]
18. Oroojalian F, Jahanafrooz Z, Chogan F, Rezayan AH, Malekzade E, Rezaei SJ, Nabid MR, Sahebkar A. Synthesis and evaluation of injectable thermosensitive penta‐block copolymer hydrogel (PNIPAAm‐PCL‐PEG‐PCL‐PNIPAAm) and star‐shaped poly (CL─ CO─ LA)‐b‐PEG for wound healing applications. Journal of cellular biochemistry. 2019 Oct; 120(10):17194-207 [DOI:10.1002/jcb.28980]
19. Palza H, Zapata PA, Angulo-Pineda C. Electroactive smart polymers for biomedical applications. Materials. 2019; 12(2):277. [DOI:10.3390/ma12020277]
20. Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: opportunities and challenges in biomedical applications. Chemical reviews. 2018; 118(14):6766-843. [DOI:10.1021/acs.chemrev.6b00275]
21. Ghasemi‐Mobarakeh L, Prabhakaran MP, Morshed M, Nasr‐Esfahani MH, Baharvand H, Kiani S, Al‐Deyab SS, Ramakrishna S. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. Journal of tissue engineering and regenerative medicine. 2011; 5(4):e17-35. [DOI:10.1002/term.383]
22. Rotman SG, Guo Z, Grijpma DW, Poot AA. Preparation and characterization of poly (trimethylene carbonate) and reduced graphene oxide composites for nerve regeneration. Polymers for advanced technologies. 2017; 28(10):1233-8. [DOI:10.1002/pat.3889]
23. Lee CJ, Wu H, Hu Y, Young M, Wang H, Lynch D, Xu F, Cong H, Cheng G. Ionic conductivity of polyelectrolyte hydrogels. ACS Appl. Mater. Interfaces. 2018; 10(6):5845-52. [DOI:10.1021/acsami.7b15934]
24. Cho Y, Son M, Jeong H, Shin JH. Electric field–induced migration and intercellular stress alignment in a collective epithelial monolayer. Mol Biol Cell. 2018; 29(19):2292-302. [DOI:10.1091/mbc.E18-01-0077]
25. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater. 2011; 23(36):H263-7. [DOI:10.1002/adma.201101503]
26. Zhang J, Li M, Kang ET, Neoh KG. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomater. 2016; 32:46-56. [DOI:10.1016/j.actbio.2015.12.024]
27. Schmidt CE, Shastri VR, Vacanti JP, Langer R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. 1997; 94(17):8948-53. [DOI:10.1073/pnas.94.17.8948]
28. Qu J, Zhao X, Ma PX, Guo B. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater. 2018; 72:55-69. [DOI:10.1016/j.actbio.2018.03.018]
29. Kennedy S, Bencherif S, Norton D, Weinstock L, Mehta M, Mooney D. Rapid and extensive collapse from electrically responsive macroporous hydrogels. Adv. Healthc. Mater. 2014; 3(4):500-7. [DOI:10.1002/adhm.201300260]
30. Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH. Device-assisted transdermal drug delivery. Drug Deliv. Rev. 2018; 127:35-45. [DOI:10.1016/j.addr.2017.08.009]
31. Guo J, Fan D. Electrically Controlled Biochemical Release from Micro/Nanostructures for in vitro and in vivo Applications: A Review. ChemNanoMat. 2018; 4(10):1023-38. [DOI:10.1002/cnma.201800157]
32. Indermun S, Choonara YE, Kumar P, du Toit LC, Modi G, Luttge R, Pillay V. An interfacially plasticized electro-responsive hydrogel for transdermal electro-activated and modulated (TEAM) drug delivery. Int. J. Pharm. 2014; 462(1-2):52-65. [DOI:10.1016/j.ijpharm.2013.11.014]
33. Chen Z, Wu C, Zhang Z, Wu W, Wang X, Yu Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chinese Chem Lett. 2018; 29(11):1601-8. [DOI:10.1016/j.cclet.2018.08.007]
34. Zhao Y, Fan T, Chen J, Su J, Zhi X, Pan P, Zou L, Zhang Q. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids and Surfaces B: Biointerfaces. 2019; 174:70-9. [DOI:10.1016/j.colsurfb.2018.11.003]
35. Lin F, Zheng J, Guo W, Zhu Z, Wang Z, Dong B, Lin C, Huang B, Lu B. Smart cellulose-derived magnetic hydrogel with rapid swelling and deswelling properties for remotely controlled drug release. Cellulose. 2019; 26(11):6861-77. [DOI:10.1007/s10570-019-02572-0]
36. Hu X, Nian G, Liang X, Wu L, Yin T, Lu H, Qu S, Yang W. Adhesive tough magnetic hydrogels with high Fe3O4 content. ACS Appl Mater Interfaces. 2019; 11(10):10292-300. [DOI:10.1021/acsami.8b20937]
37. Barbucci R, Giani G, Fedi S, Bottari S, Casolaro M. Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery. Acta Biomate. 2012; 8(12):4244-52. [DOI:10.1016/j.actbio.2012.09.006]
38. Abdeen AA, Lee J, Bharadwaj NA, Ewoldt RH, Kilian KA. Temporal modulation of stem cell activity using magnetoactive hydrogels. Adv Healthc Mater. 2016; 5(19):2536-44. [DOI:10.1002/adhm.201600349]
39. Antman-Passig M, Shefi O. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016; 16(4):2567-73. [DOI:10.1021/acs.nanolett.6b00131]
40. Rodkate N, Rutnakornpituk M. Multi-responsive magnetic microsphere of poly (N-isopropylacrylamide)/carboxymethylchitosan hydrogel for drug controlled release. Carbohydr Polym. 2016; 151:251-9. [DOI:10.1016/j.carbpol.2016.05.081]
41. Bannerman AD, Li X, Wan W. A ‘degradable’poly (vinyl alcohol) iron oxide nanoparticle hydrogel. Acta Biomater. 2017; 58:376-85. [DOI:10.1016/j.actbio.2017.05.018]
42. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001; 53(3):321-39. [DOI:10.1016/S0169-409X(01)00203-4]
43. Ichimura K, Oh SK, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface. Science. 2000; 288(5471):1624-6. [DOI:10.1126/science.288.5471.1624]
44. Wang S, Song Y, Jiang L. Photoresponsive surfaces with controllable wettability. J Photochem Photobiol C Photochem Rev. 2007; 8(1):18-29. [DOI:10.1016/j.jphotochemrev.2007.03.001]
45. Yoshida M, Lahann J. Smart nanomaterials. Acs Nano. 2008 Jun 24;2(6):1101-7. [DOI:10.1021/nn800332g]
46. Li Y, Jia X, Gao M, He H, Kuang G, Wei Y. Photoresponsive nanocarriers based on PAMAM dendrimers with ao‐nitrobenzyl shell. J Polym Sci Part A Polym Chem. 2010; 48(3):551-7. [DOI:10.1002/pola.23757]
47. Korth BD, Keng P, Shim I, Bowles SE, Tang C, Kowalewski T, Nebesny KW, Pyun J. Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J Am Chem Soc. 2006; 128(20):6562-3. [DOI:10.1021/ja0609147]
48. Rapoport NY, Christensen DA, Fain HD, Barrows L, Gao Z. Ultrasound-triggered drug targeting of tumors in vitro and in vivo. Ultrasonics. 2004; 42(1-9):943-50. [DOI:10.1016/j.ultras.2004.01.087]
49. Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev. 2011; 63(14-15):1257-66. [DOI:10.1016/j.addr.2011.06.009]
50. Andreopoulos FM, Beckman EJ, Russell AJ. Light-induced tailoring of PEG-hydrogel properties. Biomaterials. 1998; 19(15):1343-52. [DOI:10.1016/S0142-9612(97)00219-6]
51. Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJ. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 2007; 13(8):1905-25. [DOI:10.1089/ten.2006.0175]
52. Wang C, Varshney RR, Wang DA. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev. 2010; 62(7-8):699-710. [DOI:10.1016/j.addr.2010.02.001]
53. Lee SH, Moon JJ, West JL. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials. 2008; 29(20):2962-8. [DOI:10.1016/j.biomaterials.2008.04.004]
54. Jay SM, Saltzman WM. Shining light on a new class of hydrogels. Nat Biotechnol. 2009; 27(6):543-4. [DOI:10.1038/nbt0609-543]
55. Ooi HW, Hafeez S, Van Blitterswijk CA, Moroni L, Baker MB. Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Mater Horiz. 2017; 4(6):1020-40. [DOI:10.1039/C7MH00373K]
56. Eyckmans J, Boudou T, Yu X, Chen CS. A hitchhiker's guide to mechanobiology. Dev Cell. 201; 21(1):35-47. [DOI:10.1016/j.devcel.2011.06.015]
57. Chen L, Xie Z, Gan T, Wang Y, Zhang G, Mirkin CA, Zheng Z. Biomimicking Nano‐Micro Binary Polymer Brushes for Smart Cell Orientation and Adhesion Control. Small. 2016; 12(25):3400-6. [DOI:10.1002/smll.201600634]
58. Déjugnat C, Sukhorukov GB. pH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir. 2004 Aug 17;20(17):7265-9. [DOI:10.1021/la049706n]
59. Izawa H, Kawakami K, Sumita M, Tateyama Y, Hill JP, Ariga K. β-Cyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: regulation of host–guest interactions with mechanical stimuli. J Mat Chem B. 2013; 1(16):2155-61. [DOI:10.1039/C3TB00503H]
60. Guo Y, Bae J, Zhao F, Yu G. Functional hydrogels for next-generation batteries and supercapacitors. Trends in Chemistry. 2019; 1(3):335-48. [DOI:10.1016/j.trechm.2019.03.005]
61. Gelmi A, Schutt CE. Stimuli‐Responsive Biomaterials: Scaffolds for Stem Cell Control. Advanced Healthcare Materials. 2021; 10(1):2001125. [DOI:10.1002/adhm.202001125]
62. Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA. Stimuli-responsive drug release from smart polymers. J Funct Biomater. 2019; 10(3):34. [DOI:10.3390/jfb10030034]
63. Dissemond J, Witthoff M, Brauns TC, Haberer D, Goos M. PH-Wert des milieus chronischer wunden. Der Hautarzt. 2003; 54(10):959-65. [DOI:10.1007/s00105-003-0554-x]
64. Rofstad EK, Mathiesen B, Kindem K, Galappathi K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 2006; 66(13):6699-707. [DOI:10.1158/0008-5472.CAN-06-0983]
65. Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv rev. 2006; 58(15):1655-70. [DOI:10.1016/j.addr.2006.09.020]
66. Park SY, Bae YH. Novel pH‐sensitive polymers containing sulfonamide groups. Macromol Rapid Commun. 1999; 20(5):269-73. [DOI:10.1002/(SICI)1521-3927(19990501)20:5<269::AID-MARC269>3.0.CO;2-3]
67. Lee YM, Shim JK. Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation. Polymer. 1997; 38(5):1227-32. [DOI:10.1016/S0032-3861(96)00548-4]
68. Abdelaal MY, Abdel‐Razik EA, Abdel‐Bary EM, El‐Sherbiny IM. Chitosan‐based interpolymeric pH‐responsive hydrogels for in vitro drug release. J App Polym Sci. 2007; 103(5):2864-74. [DOI:10.1002/app.25154]
69. Park HY, Song IH, Kim JH, Kim WS. Preparation of thermally denatured albumin gel and its pH-sensitive swelling. Int J Pharm. 1998; 175(2):231-6. [DOI:10.1016/S0378-5173(98)00289-0]
70. Kurisawa M, Yui N. Gelatin/dextran intelligent hydrogels for drug delivery: Dual‐stimuli‐responsive degradation in relation to miscibility in interpenetrating polymer networks. Macromol Chem Phys. 1998; 199(8):1547-54. [DOI:10.1002/(SICI)1521-3935(19980801)199:8<1547::AID-MACP1547>3.0.CO;2-E]
71. Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ. Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly (acrylic acid). J Appl Polym Sci. 1999; 73(1):113-20. [DOI:10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D]
72. Nakamura K, Murray RJ, Joseph JI, Peppas NA, Morishita M, Lowman AM. Oral insulin delivery using P (MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Controlled Release. 2004; 95(3):589-99. [DOI:10.1016/j.jconrel.2003.12.022]
73. Sideratou Z, Tsiourvas D, Paleos CM. Quaternized poly (propylene imine) dendrimers as novel pH-sensitive controlled-release systems. Langmuir. 2000; 16(4):1766-9. [DOI:10.1021/la990829v]
74. Burke SE, Barrett CJ. pH-responsive properties of multilayered poly (L-lysine)/hyaluronic acid surfaces. Biomacromolecules. 2003; 4(6):1773-83. [DOI:10.1021/bm034184w]
75. Xu L, Qiu L, Sheng Y, Sun Y, Deng L, Li X, Bradley M, Zhang R. Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B. 2018; 6(3):510-7. [DOI:10.1039/C7TB01851G]
76. Kathmann EE, White LA, McCormick CL. Water-Soluble Polymers. 73. Electrolyte-and pH-Responsive Zwitterionic Copolymers of 4-[(2-Acrylamido-2-methylpropyl)-dimethylammonio] butanoate with 3-[(2-Acrylamido-2-methyl-propyl) dimethylammonio] propanesulfonate. Macromolecules. 1997; 30(18):5297-304. [DOI:10.1021/ma961214x]
77. Szczubiałka K, Jankowska M, Nowakowska M. “Smart” polymeric nanospheres as new materials for possible biomedical applications. J Mater Sci Mater Med. 2003;14(8):699-703. [DOI:10.1023/A:1024911716152]
78. Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C. Biologically erodable microspheres as potential oral drug delivery systems. Nature. 1997; 386(6623):410-4. [DOI:10.1038/386410a0]
79. Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer R. Controlled delivery systems for proteins based on poly (lactic/glycolic acid) microspheres. Pharm Res. 1991; 8(6):713-20. [DOI:10.1023/A:1015841715384]
80. Shenoy D, Little S, Langer R, Amiji M. Poly (ethylene oxide)-modified poly (β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm Res. 2005; 22(12):2107-14. [DOI:10.1007/s11095-005-8343-0]
81. Oh JK, Siegwart DJ, Lee HI, Sherwood G, Peteanu L, Hollinger JO, Kataoka K, Matyjaszewski K. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc. 2007; 129(18):5939-45. [DOI:10.1021/ja069150l]
82. Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, Yamasaki Y, Kataoka K. Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules. 2009; 10(1):119-27. [DOI:10.1021/bm800985e]
83. Yoshida R, Yamaguchi T, Kokufuta E. New intelligent polymer gels: a self-oscillating gel with pacemaking and actuating functions. J Artif Organs. 1999; 2(2):135-40. [DOI:10.1007/BF02480056]
84. Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases. 2012; 7(1):9. [DOI:10.1007/s13758-011-0009-3]
85. Theato P. Synthesis of well‐defined polymeric activated esters J Polym Sci Part A: Polym Chem. 2008; 46(20):6677-87. [DOI:10.1002/pola.22994]
86. Chaterji S, Kwon IK, Park K. Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci. 2007; 32(8-9):1083-122. [DOI:10.1016/j.progpolymsci.2007.05.018]
87. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 200; 53(3):321-39 [DOI:10.1016/s0169-409x(01)00203-4]
88. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci. 2004; 29(12):1173-222. [DOI:10.1016/j.progpolymsci.2004.08.003]
89. Urban MW, editor. Handbook of stimuli-responsive materials. John Wiley & Sons; 2011 Feb 25. [Google Scholar]
90. James TD, Shinkai S. Artificial receptors as chemosensors for carbohydrates. Host-guest chemistry. 2002:159-200. [Google Scholar]
91. Springsteen G, Wang B. A detailed examination of boronic acid–diol complexation. Tetrahedron. 2002; 58(26):5291-300. [DOI:10.1016/S0040-4020(02)00489-1]
92. Ulijn RV. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem. 2006; 16(23):2217-25. [DOI:10.1039/B601776M]
93. Miyata T, Uragami T. Biological stimulus-responsive hydrogels. InPolymeric Biomaterials, Revised and Expanded 2001 Nov 29 (pp. 973-988). CRC Press. [Google Scholar]
94. Lu ZR, Kopečková P, Kopeček J. Antigen responsive hydrogels based on polymerizable antibody Fab′ fragment. Macromol Biosci. 2003; 3(6):296-300. [DOI:10.1002/mabi.200390039]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Modern Medical Laboratory Journal