Volume 4, Issue 1 (Winter-Spring 2021)                   Mod Med Lab J 2021, 4(1): 19-38 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zare A, Sadati-Seyyed-Mahalle S F, Mokhtari A, Pakdel N, Hamidi Z, Almasi-turk S, et al . An update of coronavirus disease 2019 (COVID-19): an essential brief. Mod Med Lab J. 2021; 4 (1) :19-38
URL: http://modernmedlab.com/article-1-95-en.html
Abstract:   (74 Views)
During 2019, the number of patients suffering from cough, fever and reduction of WBC’s count increased. At the beginning, this mysterious illness was called “fever with unknown origin” but now, it is known as the 2019 novel coronavirus (2019-nCoV) or the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). The SARS-CoV-2 is one member of great family of coronaviruses. Coronaviruses are enveloped positive-stranded RNA viruses. The SARS-CoV-2 has some particular structures for infecting, reproducing and causing damage. The SARS-CoV-2 can bind angiotensin-converting enzyme 2 (ACE‐2) receptors and cause various difficulties for human. The SARS-CoV-2 can cause both serious and not-serious issues for mankind. Malayan pangolin and bat are the most suspicious candidate for being sources of the SARS-CoV-2. The SARS-CoV-2 can be transmitted by various ways such as transmitting from infected human to healthy human and can make severe pneumonia, which can lead to death. The SARS-CoV-2 can infect different kind of people with different ages, races, and social and economic levels. The SARS‐CoV‐2 infection can cause various sorts of clinical manifestations like cough and fever and intensity of signs and symptoms depends on sufferer conditions. Clinicians use all of available documents and tests for diagnosing new cases and curing patients with high accuracy. At the present time, there is no particular way for treating SARS-CoV-2 infection. It seems that the best way for standing against the SARS-CoV-2 infection is preventing from it by social distancing and vaccination. This review tries to prepare an essential brief update about SARS-CoV-2 infection.
Type of Study: Review | Subject: Infectious Diseases

References
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. [DOI:10.1056/NEJMoa2001017]
2. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses. 2020;12(4):372. [DOI:10.3390/v12040372]
3. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470-3. [DOI:10.1016/S0140-6736(20)30185-9]
4. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19—preliminary report. N Engl J Med. 2020;383(10):992-3. [DOI:10.1056/NEJMoa2007764]
5. General Office of National Health Commission. General Office of National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for Novel Coronavirus Pneumonia. 2020. [DOI:10.1142/9789811227882_0002]
6. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-99. [DOI:10.1056/NEJMoa2001282]
7. Cassady KA, Whitley RJ. Viral infections of the central nervous system. In: Richman DD, Whitley RJ, Hayden FJ, editors. Clinical Virology: Wiley; 2016. [DOI:10.1128/9781555819439.ch3]
8. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). StatPearls: StatPearls Publishing; 2020. [PubMed:32150360]
9. Elfiky AA, Mahdy SM, Elshemey WM. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J Med Virol. 2017;89(6):1040-7. [DOI:10.1002/jmv.24736]
10. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. [DOI:10.1038/s41586-020-2008-3]
11. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-92. [DOI:10.1038/s41579-018-0118-9]
12. Lang Y, Li W, Li Z, Koerhuis D, Van Den Burg AC, Rozemuller E, et al. Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proc Natl Acad Sci U S A. 2020;117(41):25759-70. [DOI:10.1073/pnas.2006299117]
13. Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 105: Elsevier; 2019. p. 93-116. [DOI:10.1016/bs.aivir.2019.08.002]
14. Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J Med Virol. 2020;92(6):584-8. [DOI:10.1002/jmv.25719]
15. Hulswit RJG, Lang Y, Bakkers MJG, Li W, Li Z, Schouten A, et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci U S A. 2019;116(7):2681-90. [DOI:10.1073/pnas.1809667116]
16. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020;17(7):765-7. [DOI:10.1038/s41423-020-0374-2]
17. Tripp RA, Tompkins SM. Roles of host gene and non-coding RNA expression in virus infection: Springer International Publishing; 2018. [Google Scholar]
18. Sawicki S, Sawicki D. Coronavirus transcription: a perspective. Coronavirus replication and reverse genetics: Springer; 2005. p. 31-55. [DOI:10.1007/3-540-26765-4_2]
19. Hussain S, Pan J, Chen Y, Yang Y, Xu J, Peng Y, et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol. 2005;79(9):5288-95. [DOI:10.1128/JVI.79.9.5288-5295.2005]
20. Perrier A, Bonnin A, Desmarets L, Danneels A, Goffard A, Rouille Y, et al. The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem. 2019;294(39):14406-21. [DOI:10.1074/jbc.RA119.008964]
21. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. [DOI:10.1016/S0140-6736(20)30183-5]
22. Wen-Bin Y, Li Z, Richard TC. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zool Res. 2020;41(3):247-57. [DOI:10.24272/j.issn.2095-8137.2020.022]
23. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995-4008. [DOI:10.1128/JVI.06540-11]
24. Nadeem MS, Zamzami MA, Choudhry H, Murtaza BN, Kazmi I, Ahmad H, et al. Origin, Potential Therapeutic Targets and Treatment for Coronavirus Disease (COVID-19). Pathogens. 2020;9(4):307. [DOI:10.3390/pathogens9040307]
25. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-90. [DOI:10.1007/s00134-020-05985-9]
26. Hu B, Zeng L-P, Yang X-L, Ge X-Y, Zhang W, Li B, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13(11):e1006698. [DOI:10.1371/journal.ppat.1006698]
27. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. [DOI:10.1128/JVI.00127-20]
28. Zhang L, Shen FM, Chen F, Lin Z. Origin and Evolution of the 2019 Novel Coronavirus. Clin Infect Dis. 2020;71(15):882-3. [DOI:10.1093/cid/ciaa112]
29. Zhao J, Cui W, Tian B-p. The potential intermediate hosts for SARS-CoV-2. Front Microbiol. 2020;11:2400. [DOI:10.3389/fmicb.2020.580137]
30. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2. [DOI:10.1038/s41591-020-0820-9]
31. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. [DOI:10.1038/s41586-020-2012-7]
32. Li X, Zai J, Zhao Q, Nie Q, Li Y, Foley BT, et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. 2020;92(6):602-11. [DOI:10.1002/jmv.25731]
33. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-207. [DOI:10.1056/NEJMoa2001316]
34. Duffy S. Why are RNA virus mutation rates so damn high? PLoS Biol. 2018;16(8):e3000003. [DOI:10.1371/journal.pbio.3000003]
35. Domingo E. Quasispecies theory in virology. J Virol. 2002;76(1):463-5. [DOI:10.1128/JVI.76.1.463-465.2002]
36. Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):179. [DOI:10.1186/s12967-020-02344-6]
37. Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon KH, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science. 2020;370(6523):1464-8. [DOI:10.1126/science.abe8499]
38. Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G, tenOever BR, et al. The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. Elife. 2021;10:e65365. [DOI:10.7554/eLife.65365]
39. Sanyaolu A, Okorie C, Marinkovic A, Haider N, Abbasi AF, Jaferi U, et al. The emerging SARS-CoV-2 variants of concern. Ther Adv Infect Dis. 2021;8:20499361211024372. [DOI:10.1177/20499361211024372]
40. Leung K, Shum MH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021;26(1):2002106. [DOI:10.2807/1560-7917.ES.2020.26.1.2002106]
41. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538):eabg3055. [DOI:10.1126/science.abg3055]
42. World Health Organization. SARS-CoV-2 Variants 2020. [Article]
43. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KH, Dingens AS, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020;182(5):1295-310. e20. [DOI:10.1016/j.cell.2020.08.012]
44. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-20. [DOI:10.1038/s41586-020-2180-5]
45. Tegally H, Wilkinson E, Lessells RJ, Giandhari J, Pillay S, Msomi N, et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat Med. 2021;27(3):440-6. [DOI:10.1038/s41591-021-01255-3]
46. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-9. [DOI:10.1080/22221751.2020.1729071]
47. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res. 2020;7(1):11. [DOI:10.1186/s40779-020-00240-0]
48. Bordbar A, Kashaki M, Rezaei F, Jafari R. Vertical transmission of COVID-19 in a 1-day-old neonate. Travel Med Infect Dis. 2020;38:101879. [DOI:10.1016/j.tmaid.2020.101879]
49. Principi N, Bosis S, Esposito S. Effects of coronavirus infections in children. Emerg Infect Dis. 2010;16(2):183-8. [DOI:10.3201/eid1602.090469]
50. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015;386(9997):995-1007. [DOI:10.1016/S0140-6736(15)60454-8]
51. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-15. [DOI:10.1016/S0140-6736(20)30360-3]
52. Ran L, Chen X, Wang Y, Wu W, Zhang L, Tan X. Risk factors of healthcare workers with corona virus disease 2019: a retrospective cohort study in a designated hospital of Wuhan in China. Clin Infect Dis. 2020. [DOI:10.1093/cid/ciaa287]
53. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80. [DOI:10.1016/j.cell.2020.02.052]
54. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614-21. [DOI:10.1128/JVI.79.23.14614-14621.2005]
55. Lu Q, Shi Y. Coronavirus disease (COVID‐19) and neonate: What neonatologist need to know. J Med Virol. 2020;92(6):564-7. [DOI:10.1002/jmv.25740]
56. Qin J, You C, Lin Q, Hu T, Yu S, Zhou XH. Estimation of incubation period distribution of COVID-19 using disease onset forward time: A novel cross-sectional and forward follow-up study. Sci Adv. 2020;6(33):eabc1202. [DOI:10.1101/2020.03.06.20032417]
57. Heymann DL, Shindo N. COVID-19: what is next for public health? Lancet. 2020;395(10224):542-5. [DOI:10.1016/S0140-6736(20)30374-3]
58. Yan J, Guo J, Fan C, Juan J, Yu X, Li J, et al. Coronavirus disease 2019 (COVID-19) in pregnant women: A report based on 116 cases. Am J Obstet Gynecol. 2020;223(1):111.e1-111.e14. [DOI:10.1016/j.ajog.2020.04.014]
59. Dashraath P, Wong JLJ, Lim MXK, Lim LM, Li S, Biswas A, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521-31. [DOI:10.1016/j.ajog.2020.03.021]
60. Ryan GA, Purandare NC, McAuliffe FM, Hod M, Purandare CN. Clinical update on COVID-19 in pregnancy: A review article. J Obstet Gynaecol Res. 2020;46(8):1235-45. [DOI:10.1111/jog.14321]
61. Yu N, Li W, Kang Q, Xiong Z, Wang S, Lin X, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis. 2020;20(5):559-64. [DOI:10.1016/S1473-3099(20)30176-6]
62. Baud D, Giannoni E, Pomar L, Qi X, Nielsen-Saines K, Musso D, et al. COVID-19 in pregnant women–Authors' reply. Lancet Infect Dis. 2020;20(6):654. [DOI:10.1016/S1473-3099(20)30192-4]
63. Wastnedge EAN, Reynolds RM, van Boeckel SR, Stock SJ, Denison FC, Maybin JA, et al. Pregnancy and COVID-19. Physiol Rev. 2021;101(1):303-18. [DOI:10.1152/physrev.00024.2020]
64. Zhu H, Wang L, Fang C, Peng S, Zhang L, Chang G, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):51-60. [DOI:10.21037/tp.2020.02.06]
65. De Bernardo G, Giordano M, Zollo G, Chiatto F, Sordino D, De Santis R, et al. The clinical course of SARS-CoV-2 positive neonates. J Perinatol. 2020;40(10):1462-9. [DOI:10.1038/s41372-020-0715-0]
66. Silasi M, Cardenas I, Kwon JY, Racicot K, Aldo P, Mor G. Viral infections during pregnancy. Am J Reprod Immunol. 2015;73(3):199-213. [DOI:10.1111/aji.12355]
67. Chen L, Li Q, Zheng D, Jiang H, Wei Y, Zou L, et al. Clinical characteristics of pregnant women with Covid-19 in Wuhan, China. N Engl J Med. 2020;382(25):e100. [DOI:10.1056/NEJMc2009226]
68. Keskin-Arslan E, Kaplan YC, Koren G. Use of azithromycin during pregnancy and breastfeeding: A coronavirus pan-demic (COVID-19) update. Motherisk Int J. 2020;1:12. [Google Scholar]
69. Burwick RM, Yawetz S, Stephenson KE, Collier A-RY, Sen P, Blackburn BG, et al. Compassionate use of remdesivir in pregnant women with severe coronavirus disease 2019. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2020. [DOI:10.1093/cid/ciaa1466]
70. Saad AF, Chappell L, Saade GR, Pacheco LD. Corticosteroids in the Management of Pregnant Patients With Coronavirus Disease (COVID-19). Obstet Gynecol. 2020;136(4):823-6. [DOI:10.1097/AOG.0000000000004103]
71. Di Renzo GC, Giardina I. Coronavirus disease 2019 in pregnancy: consider thromboembolic disorders and thromboprophylaxis. Am J Obstet Gynecol. 2020;223(1):135 [DOI:10.1016/j.ajog.2020.04.017]
72. Karimian M, Mansouri F, Borji M, Tarjoman A, Mahdikhani S, Soltany B, et al. Prevention, diagnosis, and treatment of covid-19 in infants and children: a systematic review study of performed protocols. Arch Clin Infect Dis. 2020;15(6): e103180. [DOI:10.5812/archcid.103180]
73. 73. Ran L, Chen X, Wang Y, Wu W, Zhang L, Tan X. Risk factors of healthcare workers with corona virus disease 2019: a retrospective cohort study in a designated hospital of Wuhan in China. Clinical Infectious Diseases. 2020.
74. 74. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv. 2020.
75. 75. Zhang Q, Cong M, Wang N, Li X, Zhang H, Zhang K, et al. Association of angiotensin-converting enzyme 2 gene polymorphism and enzymatic activity with essential hypertension in different gender: A case–control study. Medicine. 2018;97(42).
76. 76. Hoffmann M, Kleine-Weber H, Krüger N, Mueller MA, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. 2020.
77. 77. Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020.
78. 78. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. Journal of virology. 2005;79(23):14614-21.
79. 79. Gao Z. Efficient management of novel coronavirus pneumonia by efficient prevention and control in scientific manner. Zhonghua jie he he hu xi za zhi= Zhonghua jiehe he huxi zazhi= Chinese journal of tuberculosis and respiratory diseases. 2020;43:E001-E.
80. 80. Qin J, You C, Lin Q, Hu T, Yu S, Zhou X-H. Estimation of incubation period distribution of COVID-19 using disease onset forward time: A novel cross-sectional and forward follow-up study. Science Advances. 2020;6(33):eabc1202.
81. 81. Luo W, Yu H, Gou J, Li X, Sun Y, Li J, et al. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprints. 2020;2020:2020020407.
82. 82. Tabary M, Khanmohammadi S, Araghi F, Dadkhahfar S, Tavangar SM. Pathologic features of COVID-19: A concise review. Pathology-Research and Practice. 2020:153097.
83. 83. Menter T, Haslbauer JD, Nienhold R, Savic S, Hopfer H, Deigendesch N, et al. Postmortem examination of COVID‐19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77(2):198-209.
84. 84. Ou F, Wu H, Yang Y, Tan W, Zhang J, Gu J. Countermeasures for rapid spread of new coronavirus pneumonia in Wuhan. Chinese General Practicing Nursing. 2020.
85. 85. Calisher C, Carroll D, Colwell R, Corley RB, Daszak P, Drosten C, et al. Statement in support of the scientists, public health professionals, and medical professionals of China combatting COVID-19. The Lancet. 2020;395(10226):e42-e3.
86. 86. Calina D, Sarkar C, Arsene AL, Salehi B, Docea AO, Mondal M, et al. Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development. Immunologic research. 2020:1-10.
87. 87. Locht C. Vaccines against COVID-19. Anaesthesia, critical care & pain medicine. 2020.
88. 88. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516-27.
89. 89. de Queiroz NMGP, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhães MTQ, et al. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect. 2020;22(10):515-24.
90. 90. Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci. 2021;267:118919-.
91. 91. Centers for Disease Control and Prevention. Different COVID-19 Vaccines 2021 [Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html.
92. 92. Wang L, Shi Y, Xiao T, Fu J, Feng X, Mu D, et al. Chinese expert consensus on the perinatal and neonatal management for the prevention and control of the 2019 novel coronavirus infection. Annals of translational medicine. 2020;8(3).
93. 93. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw F-M, Lim WS, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. The Journal of infectious diseases. 2015;211(1):80-90.
94. 94. Chen D, Xu W, Lei Z, Huang Z, Liu J, Gao Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. International Journal of Infectious Diseases. 2020.
95. 95. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). Journal of general internal medicine. 2020:1-5.
96. 96. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Publishing Group; 2020.
97. 97. Luo H, Tang Q-l, Shang Y-x, Liang S-b, Yang M, Robinson N, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chinese journal of integrative medicine. 2020:1-8.
98. 98. World Health Organization. COVID-19 Clinical management: living guidance 2021 [Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-1.
99. 99. Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral research. 2018;149:58-74.
100. 100. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS pathogens. 2018;14(8):e1007236.
101. 101. de Abajo FJ, Rodríguez-Martín S, Lerma V, Mejía-Abril G, Aguilar M, García-Luque A, et al. Use of renin–angiotensin–aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. The Lancet. 2020.
102. 102. Miller J, Cantor A, Zachariah P, Ahn D, Martinez M, Margolis KG. Gastrointestinal Symptoms as a Major Presentation Component of a Novel Multisystem Inflammatory Syndrome in Children That Is Related to Coronavirus Disease 2019: A Single Center Experience of 44 Cases. Gastroenterology. 2020.
103. 103. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020;323(11):1061-9.
104. 104. Euronews. 'COVID tongue': Mouth ulcers or rashes likely a coronavirus symptom, says expert 2021 [Available from: https://www.euronews.com/2021/02/01/covid-tongue-mouth-ulcers-or-rashes-likely-a-coronavirus-symptom-says-expert.
105. 105. WEBMD HEALTH NEWS. ‘COVID Tongue’ May Be a Symptom, Professor Says 2020 [Available from: https://www.webmd.com/lung/news/20210129/covid-tongue-may-be-a-symptom-professor-says.
106. 106. Yu N, Li W, Kang Q, Xiong Z, Wang S, Lin X, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. The Lancet Infectious Diseases. 2020.
107. 107. Zhu H, Wang L, Fang C, Peng S, Zhang L, Chang G, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Translational pediatrics. 2020;9(1):51.
108. 108. Ryean GA, Purandare NC, McAuliffe FM, Hod M, Purandare CN. Clinical update on COVID‐19 in pregnancy: A review article. Journal of Obstetrics and Gynaecology Research. 2020.
109. 109. De Bernardo G, Giordano M, Zollo G, Chiatto F, Sordino D, De Santis R, et al. The clinical course of SARS-CoV-2 positive neonates. Journal of Perinatology. 2020;40(10):1462-9.
110. 110. Ryan GA, Purandare NC, McAuliffe FM, Hod M, Purandare CN. Clinical update on COVID‐19 in pregnancy: A review article. Journal of Obstetrics and Gynaecology Research. 2020;46(8):1235-45.
111. 111. Zaigham M, Andersson O. Maternal and perinatal outcomes with COVID‐19: A systematic review of 108 pregnancies. Acta obstetricia et gynecologica Scandinavica. 2020.
112. 112. Karami P, Naghavi M, Feyzi A, Aghamohammadi M, Novin MS, Mobaien A, et al. Mortality of a pregnant patient diagnosed with COVID-19: A case report with clinical, radiological, and histopathological findings. Travel medicine and infectious disease. 2020.
113. 113. Hantoushzadeh S, Shamshirsaz AA, Aleyasin A, Seferovic MD, Aski SK, Arian SE, et al. Maternal death due to COVID-19 disease. American journal of obstetrics and gynecology. 2020.
114. 114. Ferrazzi EM, Frigerio L, Cetin I, Vergani P, Spinillo A, Prefumo F, et al. COVID‐19 Obstetrics Task Force, Lombardy, Italy: executive management summary and short report of outcome. International Journal of Gynecology & Obstetrics. 2020;149(3):377-8.
115. 115. Browne PC, Linfert JB, Perez-Jorge E. Successful treatment of preterm labor in association with acute COVID-19 infection. American journal of perinatology. 2020;37(8):866.
116. 116. Bajpai D, Shah S. COVID-19 pandemic and pregnancy in kidney disease. Advances in chronic kidney disease. 2020.
117. 117. Silasi M, Cardenas I, Kwon JY, Racicot K, Aldo P, Mor G. Viral infections during pregnancy. American journal of reproductive immunology. 2015;73(3):199-213.
118. 118. Wastnedge EA, Reynolds RM, van Boeckel SR, Stock SJ, Denison FC, Maybin JA, et al. Pregnancy and COVID-19. Physiological reviews. 2021;101(1):303-18.
119. 119. Alhazzani W, Møller M, Arabi Y, Loeb M, Gong M, Fan E. & Du, B.(2020). Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive care medicine.1-34.
120. 120. Chen L, Li Q, Zheng D, Jiang H, Wei Y, Zou L, et al. Clinical characteristics of pregnant women with Covid-19 in Wuhan, China. New England Journal of Medicine. 2020.
121. 121. Dashraath P, Jeslyn WJL, Karen LMX, Min LL, Sarah L, Biswas A, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. American journal of obstetrics and gynecology. 2020.
122. 122. IoOaG R. COVID‐19 Infection Guidance for Maternity Services. Institute of Obstetricians and Gynaecologists-Royal College of Physicians Ireland (RCPI). 2020;21.
123. 123. Burwick RM, Yawetz S, Stephenson KE, Collier A-RY, Sen P, Blackburn BG, et al. Compassionate use of remdesivir in pregnant women with severe coronavirus disease 2019. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2020.
124. 124. Saad AF, Chappell L, Saade GR, Pacheco LD. Corticosteroids in the management of pregnant patients with coronavirus disease (COVID-19). Obstetrics & Gynecology. 2020;136(4):823-6.
125. 125. Di Renzo GC, Giardina I. Coronavirus disease 2019 in pregnancy: consider thromboembolic disorders and thromboprophylaxis. American Journal of Obstetrics & Gynecology. 2020.
126. 126. Knight M, Bunch K, Vousden N, Morris E, Simpson N, Gale C, et al. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. bmj. 2020;369.
127. 127. Reynolds-Wright JJ, Fletcher J. Troublesome bleeding following early medical abortion. BMJ Sexual & Reproductive Health. 2020.
128. 128. Centers for Disease Control and Prevention. Care for Newborns 2020 [Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/caring-for-newborns.html.
129. 129. Yu Y, Chen P. Coronavirus disease 2019 (COVID-19) in neonates and children from China: a review. Frontiers in pediatrics. 2020;8:287.
130. 130. The Times of India. Coronavirus: Can newborns catch COVID-19? What symptoms should you lookout for 2021 [Available from: https://timesofindia.indiatimes.com/life-style/health-fitness/health-news/coronavirus-symptoms-in-newborns-can-newborns-catch-covid-19-what-symptoms-should-you-lookout-for/photostory/80265894.cms.
131. 131. Saeedi M, Sangsari R, Mirnia K. COVID‐19 in Neonates: A Review. Iranian Journal of Pediatrics. 2021;31(1).
132. 132. Covid C, Team R, Covid C, Team R, COVID C, Team R, et al. Coronavirus disease 2019 in children—United States, february 12–april 2, 2020. Morbidity and Mortality Weekly Report. 2020;69(14):422.
133. 133. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145(6).
134. 134. Zare-Zardini H, Soltaninejad H, Ferdosian F, Hamidieh AA, Memarpoor-Yazdi M. Coronavirus disease 2019 (COVID-19) in children: prevalence, diagnosis, clinical symptoms, and treatment. International Journal of General Medicine. 2020;13:477.
135. 135. Karimi A, Rafiei Tabatabaei S, Rajabnejad M, Pourmoghaddas Z, Rahimi H, Armin S, et al. An algorithmic approach to diagnosis and treatment of coronavirus disease 2019 (COVID-19) in children: Iranian expert’s consensus statement. Archives of Pediatric Infectious Diseases. 2020;8(2).
136. 136. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020;382(18):1708-20.
137. 137. Liu K, Fang Y-Y, Deng Y, Liu W, Wang M-F, Ma J-P, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chinese medical journal. 2020.
138. 138. Jin R. Recommendation for the diagnosis and treatment of novel coronavirus infection in children in Hubei (Trial version 1). Chinese Journal of Contemporary Pediatrics. 2020;22(2).
139. 139. Martines RB, Ritter JM, Matkovic E, Gary J, Bollweg BC, Bullock H, et al. Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerging infectious diseases. 2020;26(9):2005.
140. 140. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao S-Y. Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. Journal of Thoracic Oncology. 2020.
141. 141. Bryce C, Grimes Z, Pujadas E, Ahuja S, Beasley MB, Albrecht R, et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. medRxiv. 2020.
142. 142. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. The Lancet Infectious Diseases. 2020.
143. 143. Schaller T, Hirschbühl K, Burkhardt K, Braun G, Trepel M, Märkl B, et al. Postmortem examination of patients with COVID-19. JAMA. 2020.
144. 144. Remmelink M, De Mendoca R, D'Haene N, De Clercq S, Verocq C, Lebrun L, et al. Unspecific post-mortem findings despite multiorgan 1 viral spread in COVID-19 patients. medRxiv. 2020.
145. 145. Zhou S, Wang Y, Zhu T, Xia L. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. American Journal of Roentgenology. 2020;214(6):1287-94.
146. 146. Littrup PJ, Freeman-Gibb L, Andea A, White M, Amerikia KC, Bouwman D, et al. Cryotherapy for breast fibroadenomas. Radiology. 2005;234(1):63-72.
147. 147. Wong HYF, Lam HYS, Fong AH-T, Leung ST, Chin TW-Y, Lo CSY, et al. Frequency and distribution of chest radiographic findings in COVID-19 positive patients. Radiology. 2020:201160.
148. 148. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020:200463.
149. 149. Gozansky EK, Moore WH. SARS-CoV-2 from the trenches: a perspective from New York City. American Journal of Roentgenology. 2020:1-2.
150. 150. Sun R, Liu H, Wang X. Mediastinal emphysema, giant bulla, and pneumothorax developed during the course of COVID-19 pneumonia. Korean Journal of Radiology. 2020;21(5):541.
151. 151. Lei J, Li J, Li X, Qi X. CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):18-.
152. 152. Kong W, Agarwal PP. Chest imaging appearance of COVID-19 infection. Radiology: Cardiothoracic Imaging. 2020;2(1):e200028.
153. 153. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295(1):202-7.
154. 154. Huang Y, Wang S, Liu Y, Zhang Y, Zheng C, Zheng Y, et al. A preliminary study on the ultrasonic manifestations of peripulmonary lesions of non-critical novel coronavirus pneumonia (COVID-19). Available at SSRN 3544750. 2020.
155. 155. Buonsenso D, Piano A, Raffaelli F, Bonadia N, Donati KDG, Franceschi F. novel coronavirus disease-19 pnemoniae: a case report and potential applications during COVID-19 outbreak. European review for medical and pharmacological sciences. 2020;24:2776-80.
156. 156. Moro F, Buonsenso D, Moruzzi M, Inchingolo R, Smargiassi A, Demi L, et al. How to perform lung ultrasound in pregnant women with suspected COVID‐19. Ultrasound in Obstetrics & Gynecology. 2020;55(5):593-8.
157. 157. Penga Q-Y, Wangb X-T. Findings of lung ultrasonography of novel corona virus pneumonia during the.
158. 158. Thomas A, Haljan G, Mitra A. Lung ultrasound findings in a 64-year-old woman with COVID-19. CMAJ. 2020;192(15):E399-E.
159. 159. Vetrugno L, Bove T, Orso D, Barbariol F, Bassi F, Boero E, et al. Our Italian experience using lung ultrasound for identification, grading and serial follow‐up of severity of lung involvement for management of patients with COVID‐19. Echocardiography. 2020;37(4):625-7.
160. 160. Centers for Disease Control and Prevention. Pfizer-BioNTech COVID-19 Vaccine
161. Vaccine Preparation and Administration Summary 2021 [Available from: https://www.cdc.gov/vaccines/covid-19/info-by-product/pfizer/downloads/prep-and-admin-summary.pdf.
162. 161. Centers for Disease Control and Prevention. Information about the Pfizer-BioNTech COVID-19 Vaccine 2021 [Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/Pfizer-BioNTech.html.
163. 162. Centers for Disease Control and Prevention. Moderna COVID-19 Vaccine
164. Vaccine Preparation and Administration Summary 2021 [Available from: https://www.cdc.gov/vaccines/covid-19/info-by-product/moderna/downloads/prep-and-admin-summary.pdf.
165. 163. Centers for Disease Control and Prevention. Information about the Moderna COVID-19 Vaccine 2021 [Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/Moderna.html.
166. 164. British Broadcasting Channel. Russia's Sputnik V vaccine has 92% efficacy in trial 2021 [Available from: https://www.bbc.com/news/health-55900622.
167. 165. Sputnik V. General Information 2021 [Available from: https://sputnikvaccine.com/about-vaccine/.
168. 166. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. The Lancet. 2021.
169. 167. Sarma P, Prajapat M, Avti P, Kaur H, Kumar S, Medhi B. Therapeutic options for the treatment of 2019-novel coronavirus: An evidence-based approach. Indian journal of pharmacology. 2020;52(1):1.
170. 168. Wu R, Wang L, Kuo H-CD, Shannar A, Peter R, Chou PJ, et al. An update on current therapeutic drugs treating COVID-19. Current Pharmacology Reports. 2020:1.
171. 169. Asai A, Konno M, Ozaki M, Otsuka C, Vecchione A, Arai T, et al. COVID-19 drug discovery using intensive approaches. International journal of molecular sciences. 2020;21(8):2839.
172. 170. Rudrapal M, Khairnar SJ, Borse LB, Jadhav AG. Coronavirus Disease-2019 (COVID-19): An Updated Review. Drug research. 2020;70(9):389.
173. 171. Shiraki K. Antiviral drugs against alphaherpesvirus. Human Herpesviruses: Springer; 2018. p. 103-22.
174. 172. Cao J, Forrest JC, Zhang X. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs. Antiviral research. 2015;114:1-10.
175. 173. Rossignol J-F. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral research. 2014;110:94-103.
176. 174. Rossignol J-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of infection and public health. 2016;9(3):227-30.
177. 175. Cardile AP, Warren TK, Martins KA, Reisler RB, Bavari S. Will there be a cure for Ebola? Annual review of pharmacology and toxicology. 2017;57:329-48.
178. 176. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug discoveries & therapeutics. 2020;14(1):58-60.
179. 177. Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral research. 2013;100(2):446-54.
180. 178. Goldhill DH, Te Velthuis AJ, Fletcher RA, Langat P, Zambon M, Lackenby A, et al. The mechanism of resistance to favipiravir in influenza. Proceedings of the National Academy of Sciences. 2018;115(45):11613-8.
181. 179. Nagata T, Lefor AK, Hasegawa M, Ishii M. Favipiravir: a new medication for the Ebola virus disease pandemic. Disaster medicine and public health preparedness. 2015;9(1):79-81.
182. 180. Arabi YM, Asiri AY, Assiri AM, Jokhdar HAA, Alothman A, Balkhy HH, et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial. Trials. 2020;21(1):1-8.
183. 181. Chu C, Cheng V, Hung I, Wong M, Chan K, Chan K, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-6.
184. 182. Cvetkovic RS, Goa KL. Lopinavir/ritonavir. Drugs. 2003;63(8):769-802.
185. 183. Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences. 2017;114(2):206-14.
186. 184. Al-Badr AA, Ajarim TD. Ganciclovir. Profiles of Drug Substances, Excipients and Related Methodology. 2018;43:1-208.
187. 185. Hsieh H-P, Hsu JT-A. Strategies of development of antiviral agents directed against influenza virus replication. Current pharmaceutical design. 2007;13(34):3531-42.
188. 186. Nishimura H, Yamaya M. A synthetic serine protease inhibitor, Nafamostat Mesilate, is a drug potentially applicable to the treatment of ebola virus disease. The Tohoku journal of experimental medicine. 2015;237(1):45-50.
189. 187. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio. 2018;9(2).
190. 188. Lo MK, Feldmann F, Gary JM, Jordan R, Bannister R, Cronin J, et al. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Science translational medicine. 2019;11(494):eaau9242.
191. 189. Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses. 2019;11(4):326.
192. 190. Shamsi A, Mohammad T, Anwar S, AlAjmi MF, Hussain A, Rehman M, et al. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Bioscience Reports. 2020;40(6).
193. 191. Sallard E, Lescure F-X, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178:104791-.
194. 192. Jefferson T, Jones M, Doshi P, Spencer EA, Onakpoya I, Heneghan CJ. Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. Bmj. 2014;348:g2545.
195. 193. McQuade B, Blair M. Influenza treatment with oseltamivir outside of labeled recommendations. American Journal of Health-System Pharmacy. 2015;72(2):112-6.
196. 194. Arabi YM, Shalhoub S, Mandourah Y, Al-Hameed F, Al-Omari A, Al Qasim E, et al. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: a multicenter observational study. Clinical infectious diseases. 2020;70(9):1837-44.
197. 195. Golden EB, Cho H-Y, Hofman FM, Louie SG, Schönthal AH, Chen TC. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurgical focus. 2015;38(3):E12.
198. 196. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases. The Lancet infectious diseases. 2003;3(11):722-7.
199. 197. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal. 2005;2(1):1-10.
200. 198. Pastick KA, Okafor EC, Wang F, Lofgren SM, Skipper CP, Nicol MR, et al., editors. Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19). Open Forum Infectious Diseases; 2020: Oxford University Press US.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 CC BY-NC 4.0 | Modern Medical Laboratory Journal