Volume 4, Issue 1 (Winter-Spring 2021)                   Mod Med Lab J 2021, 4(1): 19-38 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zare A, Sadati-Seyyed-Mahalle S F, Mokhtari A, Pakdel N, Hamidi Z, Almasi-turk S, et al . An update of coronavirus disease 2019 (COVID-19): an essential brief. Mod Med Lab J 2021; 4 (1) :19-38
URL: http://modernmedlab.com/article-1-95-en.html
Abstract:   (2972 Views)
During 2019, the number of patients suffering from cough, fever and reduction of WBC’s count increased. At the beginning, this mysterious illness was called “fever with unknown origin” but now, it is known as the 2019 novel coronavirus (2019-nCoV) or the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). The SARS-CoV-2 is one member of great family of coronaviruses. Coronaviruses are enveloped positive-stranded RNA viruses. The SARS-CoV-2 has some particular structures for infecting, reproducing and causing damage. The SARS-CoV-2 can bind angiotensin-converting enzyme 2 (ACE‐2) receptors and cause various difficulties for human. The SARS-CoV-2 can cause both serious and not-serious issues for mankind. Malayan pangolin and bat are the most suspicious candidate for being sources of the SARS-CoV-2. The SARS-CoV-2 can be transmitted by various ways such as transmitting from infected human to healthy human and can make severe pneumonia, which can lead to death. The SARS-CoV-2 can infect different kind of people with different ages, races, and social and economic levels. The SARS‐CoV‐2 infection can cause various sorts of clinical manifestations like cough and fever and intensity of signs and symptoms depends on sufferer conditions. Clinicians use all of available documents and tests for diagnosing new cases and curing patients with high accuracy. At the present time, there is no particular way for treating SARS-CoV-2 infection. It seems that the best way for standing against the SARS-CoV-2 infection is preventing from it by social distancing and vaccination. This review tries to prepare an essential brief update about SARS-CoV-2 infection.
Type of Study: Review Article | Subject: Infectious Diseases

References
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. [DOI:10.1056/NEJMoa2001017]
2. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses. 2020;12(4):372. [DOI:10.3390/v12040372]
3. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470-3. [DOI:10.1016/S0140-6736(20)30185-9]
4. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19—preliminary report. N Engl J Med. 2020;383(10):992-3. [DOI:10.1056/NEJMoa2007764]
5. General Office of National Health Commission. General Office of National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for Novel Coronavirus Pneumonia. 2020. [DOI:10.1142/9789811227882_0002]
6. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-99. [DOI:10.1056/NEJMoa2001282]
7. Cassady KA, Whitley RJ. Viral infections of the central nervous system. In: Richman DD, Whitley RJ, Hayden FJ, editors. Clinical Virology: Wiley; 2016. [DOI:10.1128/9781555819439.ch3]
8. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). StatPearls: StatPearls Publishing; 2020. [PubMed:32150360]
9. Elfiky AA, Mahdy SM, Elshemey WM. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J Med Virol. 2017;89(6):1040-7. [DOI:10.1002/jmv.24736]
10. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. [DOI:10.1038/s41586-020-2008-3]
11. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-92. [DOI:10.1038/s41579-018-0118-9]
12. Lang Y, Li W, Li Z, Koerhuis D, Van Den Burg AC, Rozemuller E, et al. Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proc Natl Acad Sci U S A. 2020;117(41):25759-70. [DOI:10.1073/pnas.2006299117]
13. Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 105: Elsevier; 2019. p. 93-116. [DOI:10.1016/bs.aivir.2019.08.002]
14. Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J Med Virol. 2020;92(6):584-8. [DOI:10.1002/jmv.25719]
15. Hulswit RJG, Lang Y, Bakkers MJG, Li W, Li Z, Schouten A, et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci U S A. 2019;116(7):2681-90. [DOI:10.1073/pnas.1809667116]
16. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020;17(7):765-7. [DOI:10.1038/s41423-020-0374-2]
17. Tripp RA, Tompkins SM. Roles of host gene and non-coding RNA expression in virus infection: Springer International Publishing; 2018. [Google Scholar]
18. Sawicki S, Sawicki D. Coronavirus transcription: a perspective. Coronavirus replication and reverse genetics: Springer; 2005. p. 31-55. [DOI:10.1007/3-540-26765-4_2]
19. Hussain S, Pan J, Chen Y, Yang Y, Xu J, Peng Y, et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol. 2005;79(9):5288-95. [DOI:10.1128/JVI.79.9.5288-5295.2005]
20. Perrier A, Bonnin A, Desmarets L, Danneels A, Goffard A, Rouille Y, et al. The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem. 2019;294(39):14406-21. [DOI:10.1074/jbc.RA119.008964]
21. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. [DOI:10.1016/S0140-6736(20)30183-5]
22. Wen-Bin Y, Li Z, Richard TC. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zool Res. 2020;41(3):247-57. [DOI:10.24272/j.issn.2095-8137.2020.022]
23. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995-4008. [DOI:10.1128/JVI.06540-11]
24. Nadeem MS, Zamzami MA, Choudhry H, Murtaza BN, Kazmi I, Ahmad H, et al. Origin, Potential Therapeutic Targets and Treatment for Coronavirus Disease (COVID-19). Pathogens. 2020;9(4):307. [DOI:10.3390/pathogens9040307]
25. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586-90. [DOI:10.1007/s00134-020-05985-9]
26. Hu B, Zeng L-P, Yang X-L, Ge X-Y, Zhang W, Li B, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017;13(11):e1006698. [DOI:10.1371/journal.ppat.1006698]
27. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. [DOI:10.1128/JVI.00127-20]
28. Zhang L, Shen FM, Chen F, Lin Z. Origin and Evolution of the 2019 Novel Coronavirus. Clin Infect Dis. 2020;71(15):882-3. [DOI:10.1093/cid/ciaa112]
29. Zhao J, Cui W, Tian B-p. The potential intermediate hosts for SARS-CoV-2. Front Microbiol. 2020;11:2400. [DOI:10.3389/fmicb.2020.580137]
30. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2. [DOI:10.1038/s41591-020-0820-9]
31. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. [DOI:10.1038/s41586-020-2012-7]
32. Li X, Zai J, Zhao Q, Nie Q, Li Y, Foley BT, et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. 2020;92(6):602-11. [DOI:10.1002/jmv.25731]
33. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-207. [DOI:10.1056/NEJMoa2001316]
34. Duffy S. Why are RNA virus mutation rates so damn high? PLoS Biol. 2018;16(8):e3000003. [DOI:10.1371/journal.pbio.3000003]
35. Domingo E. Quasispecies theory in virology. J Virol. 2002;76(1):463-5. [DOI:10.1128/JVI.76.1.463-465.2002]
36. Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):179. [DOI:10.1186/s12967-020-02344-6]
37. Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon KH, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science. 2020;370(6523):1464-8. [DOI:10.1126/science.abe8499]
38. Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G, tenOever BR, et al. The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. Elife. 2021;10:e65365. [DOI:10.7554/eLife.65365]
39. Sanyaolu A, Okorie C, Marinkovic A, Haider N, Abbasi AF, Jaferi U, et al. The emerging SARS-CoV-2 variants of concern. Ther Adv Infect Dis. 2021;8:20499361211024372. [DOI:10.1177/20499361211024372]
40. Leung K, Shum MH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021;26(1):2002106. [DOI:10.2807/1560-7917.ES.2020.26.1.2002106]
41. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538):eabg3055. [DOI:10.1126/science.abg3055]
42. World Health Organization. SARS-CoV-2 Variants 2020. [Article]
43. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KH, Dingens AS, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020;182(5):1295-310. e20. [DOI:10.1016/j.cell.2020.08.012]
44. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-20. [DOI:10.1038/s41586-020-2180-5]
45. Tegally H, Wilkinson E, Lessells RJ, Giandhari J, Pillay S, Msomi N, et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat Med. 2021;27(3):440-6. [DOI:10.1038/s41591-021-01255-3]
46. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-9. [DOI:10.1080/22221751.2020.1729071]
47. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res. 2020;7(1):11. [DOI:10.1186/s40779-020-00240-0]
48. Bordbar A, Kashaki M, Rezaei F, Jafari R. Vertical transmission of COVID-19 in a 1-day-old neonate. Travel Med Infect Dis. 2020;38:101879. [DOI:10.1016/j.tmaid.2020.101879]
49. Principi N, Bosis S, Esposito S. Effects of coronavirus infections in children. Emerg Infect Dis. 2010;16(2):183-8. [DOI:10.3201/eid1602.090469]
50. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015;386(9997):995-1007. [DOI:10.1016/S0140-6736(15)60454-8]
51. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-15. [DOI:10.1016/S0140-6736(20)30360-3]
52. Ran L, Chen X, Wang Y, Wu W, Zhang L, Tan X. Risk factors of healthcare workers with corona virus disease 2019: a retrospective cohort study in a designated hospital of Wuhan in China. Clin Infect Dis. 2020. [DOI:10.1093/cid/ciaa287]
53. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80. [DOI:10.1016/j.cell.2020.02.052]
54. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614-21. [DOI:10.1128/JVI.79.23.14614-14621.2005]
55. Lu Q, Shi Y. Coronavirus disease (COVID‐19) and neonate: What neonatologist need to know. J Med Virol. 2020;92(6):564-7. [DOI:10.1002/jmv.25740]
56. Qin J, You C, Lin Q, Hu T, Yu S, Zhou XH. Estimation of incubation period distribution of COVID-19 using disease onset forward time: A novel cross-sectional and forward follow-up study. Sci Adv. 2020;6(33):eabc1202. [DOI:10.1101/2020.03.06.20032417]
57. Heymann DL, Shindo N. COVID-19: what is next for public health? Lancet. 2020;395(10224):542-5. [DOI:10.1016/S0140-6736(20)30374-3]
58. Yan J, Guo J, Fan C, Juan J, Yu X, Li J, et al. Coronavirus disease 2019 (COVID-19) in pregnant women: A report based on 116 cases. Am J Obstet Gynecol. 2020;223(1):111.e1-111.e14. [DOI:10.1016/j.ajog.2020.04.014]
59. Dashraath P, Wong JLJ, Lim MXK, Lim LM, Li S, Biswas A, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521-31. [DOI:10.1016/j.ajog.2020.03.021]
60. Ryan GA, Purandare NC, McAuliffe FM, Hod M, Purandare CN. Clinical update on COVID-19 in pregnancy: A review article. J Obstet Gynaecol Res. 2020;46(8):1235-45. [DOI:10.1111/jog.14321]
61. Yu N, Li W, Kang Q, Xiong Z, Wang S, Lin X, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-centre, descriptive study. Lancet Infect Dis. 2020;20(5):559-64. [DOI:10.1016/S1473-3099(20)30176-6]
62. Baud D, Giannoni E, Pomar L, Qi X, Nielsen-Saines K, Musso D, et al. COVID-19 in pregnant women–Authors' reply. Lancet Infect Dis. 2020;20(6):654. [DOI:10.1016/S1473-3099(20)30192-4]
63. Wastnedge EAN, Reynolds RM, van Boeckel SR, Stock SJ, Denison FC, Maybin JA, et al. Pregnancy and COVID-19. Physiol Rev. 2021;101(1):303-18. [DOI:10.1152/physrev.00024.2020]
64. Zhu H, Wang L, Fang C, Peng S, Zhang L, Chang G, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):51-60. [DOI:10.21037/tp.2020.02.06]
65. De Bernardo G, Giordano M, Zollo G, Chiatto F, Sordino D, De Santis R, et al. The clinical course of SARS-CoV-2 positive neonates. J Perinatol. 2020;40(10):1462-9. [DOI:10.1038/s41372-020-0715-0]
66. Silasi M, Cardenas I, Kwon JY, Racicot K, Aldo P, Mor G. Viral infections during pregnancy. Am J Reprod Immunol. 2015;73(3):199-213. [DOI:10.1111/aji.12355]
67. Chen L, Li Q, Zheng D, Jiang H, Wei Y, Zou L, et al. Clinical characteristics of pregnant women with Covid-19 in Wuhan, China. N Engl J Med. 2020;382(25):e100. [DOI:10.1056/NEJMc2009226]
68. Keskin-Arslan E, Kaplan YC, Koren G. Use of azithromycin during pregnancy and breastfeeding: A coronavirus pan-demic (COVID-19) update. Motherisk Int J. 2020;1:12. [Google Scholar]
69. Burwick RM, Yawetz S, Stephenson KE, Collier A-RY, Sen P, Blackburn BG, et al. Compassionate use of remdesivir in pregnant women with severe coronavirus disease 2019. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2020. [DOI:10.1093/cid/ciaa1466]
70. Saad AF, Chappell L, Saade GR, Pacheco LD. Corticosteroids in the Management of Pregnant Patients With Coronavirus Disease (COVID-19). Obstet Gynecol. 2020;136(4):823-6. [DOI:10.1097/AOG.0000000000004103]
71. Di Renzo GC, Giardina I. Coronavirus disease 2019 in pregnancy: consider thromboembolic disorders and thromboprophylaxis. Am J Obstet Gynecol. 2020;223(1):135 [DOI:10.1016/j.ajog.2020.04.017]
72. Karimian M, Mansouri F, Borji M, Tarjoman A, Mahdikhani S, Soltany B, et al. Prevention, diagnosis, and treatment of covid-19 in infants and children: a systematic review study of performed protocols. Arch Clin Infect Dis. 2020;15(6): e103180. [DOI:10.5812/archcid.103180]
73. Saeedi M, Sangsari R, Mirnia K. COVID‐19 in Neonates: A Review. Iran J Pediatr.2021;31(1):e104423. [DOI:10.5812/ijp.104423]
74. Zare-Zardini H, Soltaninejad H, Ferdosian F, Hamidieh AA, Memarpoor-Yazdi M. Coronavirus disease 2019 (COVID-19) in children: prevalence, diagnosis, clinical symptoms, and treatment. Int J Gen Med. 2020;13:477-82. [DOI:10.2147/IJGM.S262098]
75. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145(6):e20200702. [DOI:10.1542/peds.2020-0702]
76. Karimi A, Rafiei Tabatabaei S, Rajabnejad M, Pourmoghaddas Z, Rahimi H, Armin S, et al. An algorithmic approach to diagnosis and treatment of coronavirus disease 2019 (COVID-19) in children: Iranian expert’s consensus statement. Arch Clin Infect Dis. 2020;8(2): e102400. [DOI:10.5812/pedinfect.102400]
77. Luo W, Yu H, Gou J, Li X, Sun Y, Li J, et al. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprints. 2020;2020:2020020407. [DOI:10.1097/TP.0000000000003412]
78. Menter T, Haslbauer JD, Nienhold R, Savic S, Hopfer H, Deigendesch N, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77(2):198-209. [DOI:10.1111/his.14134]
79. Ou F, Wu H, Yang Y, Tan W, Zhang J, Gu J. Countermeasures for rapid spread of new coronavirus pneumonia in Wuhan. Chinese General Practicing Nursing. 2020. [Google Scholar]
80. Calisher C, Carroll D, Colwell R, Corley RB, Daszak P, Drosten C, et al. Statement in support of the scientists, public health professionals, and medical professionals of China combatting COVID19. Lancet. 2020;395(10226):e42-e3. [DOI:10.1016/S0140-6736(20)30418-9]
81. Calina D, Sarkar C, Arsene AL, Salehi B, Docea AO, Mondal M, et al. Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development. Immunol Res. 2020;68(6):315-24. [DOI:10.1007/s12026-020-09154-4]
82. Locht C. Vaccines against COVID-19. Anaesth Crit Care Pain Med. 2020;39(6):703-5. [DOI:10.1016/j.accpm.2020.10.006]
83. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516-27. [DOI:10.1038/s41586-020-2798-3]
84. de Queiroz N, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhaes MTQ, et al. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect. 2020;22(10):515-24. [DOI:10.1016/j.micinf.2020.09.004]
85. Silveira MM, Moreira G, Mendonca M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci. 2021;267:118919. [DOI:10.1016/j.lfs.2020.118919]
86. Tanne JH. Covid-19: FDA panel votes to authorise Pfizer BioNTech vaccine. BMJ. 2020;371:m4799. [DOI:10.1136/bmj.m4799]
87. Oliver SE. The advisory committee on immunization practices’ interim recommendation for use of moderna COVID-19 vaccine—United States, December 2020. MMWR Morb Mortal Wkly Rep. 2021;69(5152):1653-6. [Google Scholar]
88. Venkadapathi J, Govindarajan VK, Sekaran S, Venkatapathy S. A minireview of the promising drugs and vaccines in pipeline for the treatment of COVID-19 and current update on clinical trials. Front Mol Biosci. 2021;8:637378. [DOI:10.3389/fmolb.2021.637378]
89. Wang L, Shi Y, Xiao T, Fu J, Feng X, Mu D, et al. Chinese expert consensus on the perinatal and neonatal management for the prevention and control of the 2019 novel coronavirus infection (First edition). Ann Transl Med. 2020;8(3):47. [DOI:10.21037/atm.2020.02.20]
90. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw FM, Lim WS, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015;211(1):80-90. [DOI:10.1093/infdis/jiu396]
91. Afshar A, Zare M, Farrar Z, Hashemi A, Khoradmehr A, Habibi H, et al. COVID‐19 hypothesis: Exosomes of mesenchymal stem cells as nano-cargos for anti-SARS-CoV-2 asRNAs. Mod Med Lab J. 2021;4(1):11-18. [DOI:10.30699/mmlj17.4.1.11]
92. Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infect Genet Evol. 2020;85:104422. [DOI:10.1016/j.meegid.2020.104422]
93. Li Z, Niu S, Guo B, Gao T, Wang L, Wang Y, et al. Stem cell therapy for COVID‐19, ARDS and pulmonary fibrosis. Cell Prolif. 2020;53(12):e12939. [DOI:10.1111/cpr.12939]
94. Chen D, Xu W, Lei Z, Huang Z, Liu J, Gao Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. Int J Infect Dis. 2020;93:297-9. [DOI:10.1016/j.ijid.2020.03.003]
95. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med. 2020;35(5):1545-9. [DOI:10.1007/s11606-020-05762-w]
96. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020;19(3):149-50. [DOI:10.1038/d41573-020-00016-0]
97. Luo H, Tang Q-l, Shang Y-x, Liang S-b, Yang M, Robinson N, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med. 2020:1-8. [DOI:10.1007/s11655-020-3192-6]
98. Samieefar N, Boroujeni RY, Jamee M, Lotfi M, Golabchi MR, Afshar A, et al. Country quarantine during COVID-19: critical or not? Disaster Med Public Health Prep. 2020:1-2. [DOI:10.1017/dmp.2020.384]
99. Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58-74. [DOI:10.1016/j.antiviral.2017.11.001]
100. Song W, Gui M, Wang X, Xiang Y. CryoEM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018;14(8):e1007236. [DOI:10.1371/journal.ppat.1007236]
101. de Abajo FJ, Rodríguez-Martín S, Lerma V, Mejía-Abril G, Aguilar M, García-Luque A, et al. Use of renin–angiotensin–aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet. 2020;395(10238):1705-14. [DOI:10.1016/S0140-6736(20)31030-8]
102. Al-Omari A, Alhuqbani WN, Zaidi ARZ, Al-Subaie MF, AlHindi AM, Abogosh AK, et al. Clinical characteristics of non-intensive care unit COVID-19 patients in Saudi Arabia: a descriptive cross-sectional study. J Infect Public Health. 2020;13(11):1639-44. [DOI:10.1016/j.jiph.2020.09.003]
103. Miller J, Cantor A, Zachariah P, Ahn D, Martinez M, Margolis KG. Gastrointestinal symptoms as a major presentation component of a novel multisystem inflammatory syndrome in children that is related to coronavirus disease 2019: a single center experience of 44 cases. Gastroenterology. 2020;159(4):1571-4. e2. [DOI:10.1053/j.gastro.2020.05.079]
104. Graham EL, Clark JR, Orban ZS, Lim PH, Szymanski AL, Taylor C, et al. Persistent neurologic symptoms and cognitive dysfunction in non‐hospitalized Covid‐19 “long haulers”. Ann Clin Transl Neurol. 2021;8(5):1073-85. [DOI:10.1002/acn3.51350]
105. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID19). JAMA cardiology. 2020;5(7):819-24. [DOI:10.1001/jamacardio.2020.1096]
106. Paradowska-Stolarz AM. Oral manifestations of COVID-19: Brief review. Dent Med Probl. 2021;58(1):123-6. [DOI:10.17219/dmp/131989]
107. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. [DOI:10.1056/NEJMoa2002032]
108. Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020;133(9):1025-31. [DOI:10.1097/CM9.0000000000000744]
109. Jin R. Recommendation for the diagnosis and treatment of novel coronavirus infection in children in Hubei (Trial version 1). Zhongguo Dang Dai Er Ke Za Zhi. 2020;22(2):96-9. [DOI:10.7499/j.issn.1008-8830.2020.02.003]
110. Martines RB, Ritter JM, Matkovic E, Gary J, Bollweg BC, Bullock H, et al. Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerg Infect Dis. 2020;26(9):2005-15. [DOI:10.3201/eid2609.202095]
111. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020;15(5):700-4. [DOI:10.1016/j.jtho.2020.02.010]
112. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary postmortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20(10):1135-40. [DOI:10.1016/S1473-3099(20)30434-5]
113. Schaller T, Hirschbuhl K, Burkhardt K, Braun G, Trepel M, Markl B, et al. Postmortem examination of patients with COVID-19. JAMA. 2020;323(24):2518-20 [DOI:10.1001/jama.2020.8907]
114. Remmelink M, De Mendonca R, D'Haene N, De Clercq S, Verocq C, Lebrun L, et al. Unspecific postmortem findings despite multiorgan viral spread in COVID-19 patients. Crit Care. 2020;24(1):495. [DOI:10.1186/s13054-020-03218-5]
115. Zhou S, Wang Y, Zhu T, Xia L. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China. AJR Am J Roentgenol. 2020;214(6):1287-94. [DOI:10.2214/AJR.20.22975]
116. Littrup PJ, Freeman-Gibb L, Andea A, White M, Amerikia KC, Bouwman D, et al. Cryotherapy for breast fibroadenomas. Radiology. 2005;234(1):63-72. [DOI:10.1148/radiol.2341030931]
117. Wong HYF, Lam HYS, Fong AH, Leung ST, Chin TW, Lo CSY, et al. Frequency and distribution of chest radiographic findings in patients positive for COVID-19. Radiology. 2020;296(2):E72-E8. [DOI:10.1148/radiol.2020201160]
118. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020;295(3):200463. [DOI:10.1148/radiol.2020200463]
119. Gozansky EK, Moore WH. SARS-CoV-2 from the trenches: A perspective from New York city. AJR Am J Roentgenol. 2020;215(1):27-8. [DOI:10.2214/AJR.20.23302]
120. Sun R, Liu H, Wang X. Mediastinal emphysema, giant bulla, and pneumothorax developed during the course of COVID-19 pneumonia. Korean J Radiol. 2020;21(5):541-4. [DOI:10.3348/kjr.2020.0180]
121. Lei J, Li J, Li X, Qi X. CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):18. [DOI:10.1148/radiol.2020200236]
122. Kong W, Agarwal PP. Chest imaging appearance of COVID-19 infectionp. Radiol Cardiothorac Imaging. 2020;2(1):e200028. [DOI:10.1148/ryct.2020200028]
123. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020;295(1):202-7. [DOI:10.1148/radiol.2020200230]
124. Buonsenso D, Piano A, Raffaelli F, Bonadia N, de Gaetano Donati K, Franceschi F. Point-of-Care Lung Ultrasound findings in novel coronavirus disease-19 pnemoniae: a case report and potential applications during COVID-19 outbreak. Eur Rev Med Pharmacol Sci. 2020;24(5):2776-80. [DOI:10.26355/eurrev_202003_20549]
125. Moro F, Buonsenso D, Moruzzi M, Inchingolo R, Smargiassi A, Demi L, et al. How to perform lung ultrasound in pregnant women with suspected COVID‐19. Ultrasound Obstet Gynecol. 2020;55(5):593-8. [DOI:10.1002/uog.22028]
126. Peng Q-Y, Wang X-T, Zhang L-N. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019-2020 epidemic. Intensive Care Med. 2020;46(5):849-50 [DOI:10.1007/s00134-020-05996-6]
127. Thomas A, Haljan G, Mitra A. Lung ultrasound findings in a 64-year-old woman with COVID-19. CMAJ. 2020;192(15):E399. [DOI:10.1503/cmaj.200414]
128. Vetrugno L, Bove T, Orso D, Barbariol F, Bassi F, Boero E, et al. Our Italian experience using lung ultrasound for identification, grading and serial follow‐up of severity of lung involvement for management of patients with COVID‐19. Echocardiography. 2020;37(4):625-7. [DOI:10.1111/echo.14664]
129. Oliver SE, Gargano JW, Marin M, Wallace M, Curran KG, Chamberland M, et al. The advisory committee on immunization practices’ interim recommendation for use of PfizerBioNTech COVID-19 vaccine—United States, December 2020. MMWR Morb Mortal Wkly Rep. 2020;69(50):1922-4 [Google Scholar]
130. Knoll MD, Wonodi C. OxfordAstraZeneca COVID-19 vaccine efficacy. Lancet. 2021;397(10269):72-4. [DOI:10.1016/S0140-6736(20)32623-4]
131. Oliver SE, Gargano JW, Scobie H, Wallace M, Hadler SC, Leung J, et al. The advisory committee on immunization practices’ interim recommendation for use of Janssen COVID-19 vaccine—United States, February 2021. MMWR Morb Mortal Wkly Rep. 2021;70(9):329-32. [DOI:10.15585/mmwr.mm7009e4]
132. Sarma P, Prajapat M, Avti P, Kaur H, Kumar S, Medhi B. Therapeutic options for the treatment of 2019-novel coronavirus: An evidencebased approach. Indian J Pharmacol. 2020;52(1):1-5. [DOI:10.4103/ijp.IJP_119_20]
133. Wu R, Wang L, Kuo HD, Shannar A, Peter R, Chou PJ, et al. An Update on Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol Rep. 2020:1-15. [DOI:10.1007/s40495-020-00216-7]
134. Asai A, Konno M, Ozaki M, Otsuka C, Vecchione A, Arai T, et al. COVID-19 drug discovery using intensive approaches. Int J Mol Sci. 2020;21(8):2839. [DOI:10.3390/ijms21082839]
135. Rudrapal M, Khairnar SJ, Borse LB, Jadhav AG. Coronavirus disease-2019 (COVID19): an updated review. Drug Res (Stuttg). 2020;70(9):389-400. [DOI:10.1055/a-1217-2397]
136. Shiraki K. Antiviral drugs against alphaherpesvirus. Human Herpesviruses: Springer; 2018. p. 103-22. [DOI:10.1007/978-981-10-7230-7_6]
137. Cao J, Forrest JC, Zhang X. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res. 2015;114:1-10. [DOI:10.1016/j.antiviral.2014.11.010]
138. Rossignol JF. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res. 2014;110:94-103. [DOI:10.1016/j.antiviral.2014.07.014]
139. Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health. 2016;9(3):227-30. [DOI:10.1016/j.jiph.2016.04.001]
140. Cardile AP, Warren TK, Martins KA, Reisler RB, Bavari S. Will there be a cure for Ebola? Annu Rev Pharmacol Toxicoll. 2017;57:329-48. [DOI:10.1146/annurev-pharmtox-010716-105055]
141. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14(1):58-60. [DOI:10.5582/ddt.2020.01012]
142. Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013;100(2):446-54. [DOI:10.1016/j.antiviral.2013.09.015]
143. Goldhill DH, Te Velthuis AJW, Fletcher RA, Langat P, Zambon M, Lackenby A, et al. The mechanism of resistance to favipiravir in influenza. Proc Natl Acad Sci U S A. 2018;115(45):11613-8. [DOI:10.1073/pnas.1811345115]
144. Nagata T, Lefor AK, Hasegawa M, Ishii M. Favipiravir: a new medication for the Ebola virus disease pandemic. Disaster Med Public Health Prep. 2015;9(1):79-81. [DOI:10.1017/dmp.2014.151]
145. Arabi YM, Asiri AY, Assiri AM, Aziz Jokhdar HA, Alothman A, Balkhy HH, et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-beta1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial. Trials. 2020;21(1):8. [DOI:10.1186/s13063-019-3846-x]
146. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-6. [DOI:10.1136/thorax.2003.01265]
147. Cvetkovic RS, Goa KL. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. 2003;63(8):769-802. [DOI:10.2165/00003495-200363080-00004]
148. Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci U S A. 2017;114(2):206-14. [DOI:10.1073/pnas.1617020114]
149. Al-Badr AA, Ajarim TD. Ganciclovir. Profiles Drug Subst Excip Relat Methodol. 2018;43:1-208. [DOI:10.1016/bs.podrm.2017.12.001]
150. Hsieh HP, Hsu JT. Strategies of development of antiviral agents directed against influenza virus replication. Curr Pharm Des. 2007;13(34):3531-42. [DOI:10.2174/138161207782794248]
151. Nishimura H, Yamaya M. A synthetic serine protease inhibitor, Nafamostat Mesilate, is a drug potentially applicable to the treatment of ebola virus disease. Tohoku J Exp Medc. 2015;237(1):45-50. [DOI:10.1620/tjem.237.45]
152. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 2018;9(2):e00221-e002218. [DOI:10.1128/mBio.00221-18]
153. Lo MK, Feldmann F, Gary JM, Jordan R, Bannister R, Cronin J, et al. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci Transl Med. 2019;11(494):eaau9242. [DOI:10.1126/scitranslmed.aau9242]
154. Tchesnokov EP, Feng JY, Porter DP, Gotte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses. 2019;11(4):326. [DOI:10.3390/v11040326]
155. Shamsi A, Mohammad T, Anwar S, AlAjmi MF, Hussain A, Rehman MT, et al. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Biosci Rep. 2020;40(6). [DOI:10.1042/BSR20201256]
156. Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178:104791. [DOI:10.1016/j.antiviral.2020.104791]
157. Jefferson T, Jones M, Doshi P, Spencer EA, Onakpoya I, Heneghan CJ. Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ. 2014;348:g2545. [DOI:10.1136/bmj.g2545]
158. McQuade B, Blair M. Influenza treatment with oseltamivir outside of labeled recommendations. Am J Health Syst Pharm. 2015;72(2):112-6. [DOI:10.2146/ajhp140390]
159. Arabi YM, Shalhoub S, Mandourah Y, Al-Hameed F, Al-Omari A, Al Qasim E, et al. Ribavirin and interferon therapy for critically Ill patients with Middle East respiratory syndrome: A multicenter observational study. Clin Infect Dis. 2020;70(9):1837-44. [DOI:10.1093/cid/ciz544]
160. Golden EB, Cho HY, Hofman FM, Louie SG, Schonthal AH, Chen TC. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurg Focus. 2015;38(3):E12. [DOI:10.3171/2014.12.FOCUS14748]
161. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis. 2003;3(11):722-7. [DOI:10.1016/s1473-3099(03)00806-5]
162. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2(1):69. [DOI:10.1186/1743-422X-2-69]
163. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71. [DOI:10.1038/s41422-020-0282-0]
164. Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr. 2020;14(3):241-6. [DOI:10.1016/j.dsx.2020.03.011]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Modern Medical Laboratory Journal