Volume 5, Issue 2 (Summer-Fall 2022)                   Mod Med Lab J 2022, 5(2): 1-18 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sedaghat M, Mahmoodi Khaledi E. New update on molecular determinants of colistin resistance in bacteria. Mod Med Lab J 2022; 5 (2) :1-18
URL: http://modernmedlab.com/article-1-116-en.html
Abstract:   (1281 Views)
Colistin relates to the polymyxin group of antibiotics. This antibiotic is still used to destroy gram-negative bacteria as a last resort. However, resistance to this antibiotic has been reported and is appearing day by day. Not much information is available on the exact mechanisms of resistance to this antibiotic. Also, not enough information about pharmacokinetics and pharmacodynamics is available, so the optimal dose should be determined to use these antibiotics to prevent the toxic effects of this antibiotic. In current study, additionally to their pharmacokinetics and pharmacodynamics, we have presented current knowledge about the genes and two-component systems that may cause such resistance to polymyxin and colistin.

 
Full-Text [PDF 887 kb]   (1103 Downloads)    
Type of Study: Review Article | Subject: Medical Biochemistry

References
1. Ganz T, Lehrer RI. Antibiotic peptides from higher eukaryotes: biology and applications. Molecular medicine today. 1999;5(7):292-7.
2. Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology. 2021;11:453.
3. Huan Y. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11: 1–21. 2020.
4. Li S, Wang Y, Xue Z, Jia Y, Li R, He C, et al. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends in Food Science & Technology. 2021;109:103-15.
5. Zhang Q-Y, Yan Z-B, Meng Y-M, Hong X-Y, Shao G, Ma J-J, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research. 2021;8(1):1-25.
6. Bryskier A. Antimicrobial agents: antibacterials and antifungals: ASM press; 2005.
7. Hancock RE. Peptide antibiotics. The lancet. 1997;349(9049):418-22.
8. Koczulla AR, Bals R. Antimicrobial peptides. Drugs. 2003;63(4):389-406.
9. Singh N, Abraham J. Ribosomally synthesized peptides from natural sources. The Journal of antibiotics. 2014;67(4):277.
10. Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. Correction: The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chemical Society Reviews. 2022;51(2):792-.
11. Henkel M, Hausmann R. Chapter 2 - Diversity and Classification of Microbial Surfactants. In: Hayes DG, Solaiman DKY, Ashby RD, editors. Biobased Surfactants (Second Edition): AOCS Press; 2019. p. 41-63.
12. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. The Lancet infectious diseases. 2006;6(9):589-601.
13. Nation RL, Rigatto MHP, Falci DR, Zavascki AP. Polymyxin Acute Kidney Injury: Dosing and Other Strategies to Reduce Toxicity. Antibiotics. 2019;8(1):24.
14. Bergen PJ, Li J, Rayner CR, Nation RL. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2006;50(6):1953-8.
15. Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K. Stability of colistin and colistin methanesulfonate in aqueous media and plasma as determined by high-performance liquid chromatography. Antimicrobial agents and chemotherapy. 2003;47(4):1364-70.
16. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K. Pharmacokinetics of colistin methanesulphonate and colistin in rats following an intravenous dose of colistin methanesulphonate. Journal of Antimicrobial Chemotherapy. 2004;53(5):837-40.
17. Nation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese? Clinical infectious diseases. 2014;59(1):88-94.
18. Yahav D, Farbman L, Leibovici L, Paul M. Colistin: new lessons on an old antibiotic. Clinical microbiology and infection. 2012;18(1):18-29.
19. Falagas ME, Kasiakou SK, Saravolatz LD. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clinical infectious diseases. 2005;40(9):1333-41.
20. Benedict R, Langlykke A. Antibiotic activity of Bacillus polymyxa. Journal of bacteriology. 1947;54(1):24.
21. Bialvaei AZ, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance. Current medical research and opinion. 2015;31(4):707-21.
22. Gallardo-Godoy A, Muldoon C, Becker B, Elliott AG, Lash LH, Huang JX, et al. Activity and predicted nephrotoxicity of synthetic antibiotics based on polymyxin B. Journal of medicinal chemistry. 2016;59(3):1068-77.
23. Dixon RA, Chopra I. Leakage of periplasmic proteins from Escherichia coli mediated by polymyxin B nonapeptide. Antimicrobial agents and chemotherapy. 1986;29(5):781-8.
24. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clinical microbiology reviews. 2017;30(2):557-96.
25. El-Sayed Ahmed MAE-G, Zhong L-L, Shen C, Yang Y, Doi Y, Tian G-B. Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerging microbes & infections. 2020;9(1):868-85.
26. Kasiakou SK, Rafailidis PI, Liaropoulos K, Falagas ME. Cure of post-traumatic recurrent multiresistant Gram-negative rod meningitis with intraventricular colistin. Journal of infection. 2005;50(4):348-52.
27. Rhouma M, Beaudry F, Theriault W, Letellier A. Colistin in pig production: chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Frontiers in microbiology. 2016;7:1789.
28. Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, et al. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. The Journal of antibiotics. 2014;67(2):147-51.
29. Cheah S-E, Wang J, Nguyen VTT, Turnidge JD, Li J, Nation RL. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. Journal of Antimicrobial Chemotherapy. 2015;70(12):3291-7.
30. Landersdorfer CB, Nation RL, editors. Colistin: how should it be dosed for the critically ill? Seminars in respiratory and critical care medicine; 2015: Thieme Medical Publishers.
31. Bergen PJ, Li J, Nation RL. Dosing of colistin—back to basic PK/PD. Current opinion in pharmacology. 2011;11(5):464-9.
32. John E, Bennett R, Blaser M. Polymyxins (polymyxin B and colistin). Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 2015;8:549-55.
33. Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K, Valentine J. Simple method for assaying colistin methanesulfonate in plasma and urine using high-performance liquid chromatography. Antimicrobial agents and chemotherapy. 2002;46(10):3304-7.
34. Markou N, Markantonis SL, Dimitrakis E, Panidis D, Boutzouka E, Karatzas S, et al. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, gram-negative bacilli infections: a prospective, open-label, uncontrolled study. Clinical therapeutics. 2008;30(1):143-51.
35. Bergen PJ, Li J, Nation RL, Turnidge JD, Coulthard K, Milne RW. Comparison of once-, twice-and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Journal of antimicrobial chemotherapy. 2008;61(3):636-42.
36. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136(5):1237-48.
37. Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson B, et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrobial agents and chemotherapy. 2012;56(8):4241-9.
38. Roberts JA, Lipman J. Editorial commentary: closing the loop—a colistin clinical study to confirm dosing recommendations from PK/PD modeling. Oxford University Press; 2012.
39. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. The Lancet infectious diseases. 2014;14(6):498-509.
40. Plachouras D, Karvanen M, Friberg L, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrobial agents and chemotherapy. 2009;53(8):3430-6.
41. Javan AO, Shokouhi S, Sahraei Z. A review on colistin nephrotoxicity. European journal of clinical pharmacology. 2015;71(7):801-10.
42. Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Critical care. 2006;10(1):R27.
43. Aquilini E, Merino S, Knirel YA, Regué M, Tomás JM. Functional identification of Proteus mirabilis eptC gene encoding a core lipopolysaccharide phosphoethanolamine transferase. International journal of molecular sciences. 2014;15(4):6689-702.
44. Olaitan AO, Diene SM, Gupta SK, Adler A, Assous MV, Rolain J-M. Genome analysis of NDM-1 producing Morganella morganii clinical isolate. Expert review of anti-infective therapy. 2014;12(10):1297-305.
45. Wang Y, Xu C, Zhang R, Chen Y, Shen Y, Hu F, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. The Lancet Infectious Diseases. 2020;20(10):1161-71.
46. Baron S, Hadjadj L, Rolain J-M, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. International journal of antimicrobial agents. 2016;48(6):583-91.
47. Gunn JS. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends in microbiology. 2008;16(6):284-90.
48. Yan A, Guan Z, Raetz CR. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. Journal of Biological Chemistry. 2007;282(49):36077-89.
49. Groisman EA. The pleiotropic two-component regulatory system PhoP-PhoQ. Journal of bacteriology. 2001;183(6):1835-42.
50. Park SY, Groisman EA. Signal‐specific temporal response by the S almonella PhoP/PhoQ regulatory system. Molecular microbiology. 2014;91(1):135-44.
51. Jayol A, Nordmann P, Brink A, Poirel L. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system. Antimicrobial agents and chemotherapy. 2015;59(5):2780-4.
52. Olaitan AO, Diene SM, Kempf M, Berrazeg M, Bakour S, Gupta SK, et al. Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator mgrB: an epidemiological and molecular study. International journal of antimicrobial agents. 2014;44(6):500-7.
53. Stylianos C, Vassiliki P, Hamel M, Chatzipanagiotou S, Hadjadj L, Petinaki E, et al. Inactivation of mgrB gene regulator and resistance to colistin is becoming endemic in carbapenem-resistant Klebsiella pneumoniae in Greece: A nationwide study from 2014 to 2017. 2020.
54. Wright MS, Suzuki Y, Jones MB, Marshall SH, Rudin SD, van Duin D, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrobial agents and chemotherapy. 2015;59(1):536-43.
55. Lippa AM, Goulian M. Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS genetics. 2009;5(12).
56. Cannatelli A, Giani T, D'Andrea MM, Di Pilato V, Arena F, Conte V, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrobial agents and chemotherapy. 2014;58(10):5696-703.
57. Jayol A, Poirel L, Villegas M-V, Nordmann P. Modulation of mgrB gene expression as a source of colistin resistance in Klebsiella oxytoca. International journal of antimicrobial agents. 2015;46(1):108-10.
58. Cheng Y-H, Lin T-L, Lin Y-T, Wang J-T. Amino acid substitutions of CrrB responsible for resistance to colistin through CrrC in Klebsiella pneumoniae. Antimicrobial agents and chemotherapy. 2016;60(6):3709-16.
59. De Majumdar S, Yu J, Fookes M, McAteer SP, Llobet E, Finn S, et al. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS pathogens. 2015;11(1).
60. Liu Y, Wang Y, Walsh T, Yi L, Zhang R, Spencer J, et al. Yu 185 LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. 2016. Emergence of 186 plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in 187 China: A microbiological and molecular biological study. Lancet Infect Dis.16:161-8.
61. Wang C, Feng Y, Liu L, Wei L, Kang M, Zong Z. Identification of novel mobile colistin resistance gene mcr-10. Emerging microbes & infections. 2020;9(1):508-16.
62. Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio. 2019;10(3).
63. AbuOun M, Stubberfield EJ, Duggett NA, Kirchner M, Dormer L, Nunez-Garcia J, et al. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. Journal of Antimicrobial Chemotherapy. 2017;72(10):2745-9.
64. Poirel L, Kieffer N, Fernandez-Garayzabal JF, Vela AI, Larpin Y, Nordmann P. MCR-2-mediated plasmid-borne polymyxin resistance most likely originates from Moraxella pluranimalium. Journal of Antimicrobial Chemotherapy. 2017;72(10):2947-9.
65. Yang Y-Q, Li Y-X, Lei C-W, Zhang A-Y, Wang H-N. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy. 2018;73(7):1791-5.
66. Börjesson S, Greko C, Myrenås M, Landén A, Nilsson O, Pedersen K. A link between the newly described colistin resistance gene mcr-9 and clinical Enterobacteriaceae isolates carrying blaSHV-12 from horses in Sweden. Journal of global antimicrobial resistance. 2020;20:285-9.
67. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio. 2017;8(3):e00543-17.
68. Xu Y, Zhong L-L, Srinivas S, Sun J, Huang M, Paterson DL, et al. Spread of MCR-3 colistin resistance in China: an epidemiological, genomic and mechanistic study. EBioMedicine. 2018;34:139-57.
69. Eichhorn I, Feudi C, Wang Y, Kaspar H, Feßler AT, Lübke-Becker A, et al. Identification of novel variants of the colistin resistance gene mcr-3 in Aeromonas spp. from the national resistance monitoring programme GE RM-Vet and from diagnostic submissions. Journal of Antimicrobial Chemotherapy. 2018;73(5):1217-21.
70. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance. 2016;21(27):30280.
71. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Erratum for Yin et al.,“Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli”. MBio. 2017;8(4).
72. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance. 2017;22(31):30589.
73. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. Journal of Antimicrobial Chemotherapy. 2017;72(12):3317-24.
74. Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerging microbes & infections. 2018;7(1):1-9.
75. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance. 2017;22(31).
76. Alba P, Leekitcharoenphon P, Franco A, Feltrin F, Ianzano A, Caprioli A, et al. Molecular epidemiology of mcr-encoded colistin resistance in Enterobacteriaceae from food-producing animals in Italy revealed through the EU harmonized antimicrobial resistance monitoring. Frontiers in microbiology. 2018;9:1217.
77. Nesporova K, Jamborova I, Valcek A, Medvecky M, Literak I, Dolejska M. Various conjugative plasmids carrying the mcr-5 gene in Escherichia coli isolates from healthy chickens in Paraguay. Journal of Antimicrobial Chemotherapy. 2019;74(11):3394-7.
78. Hadjadj L, Baron SA, Olaitan AO, Morand S, Rolain J-M. Co-occurrence of variants of mcr-3 and mcr-8 genes in a Klebsiella pneumoniae isolate from Laos. Frontiers in microbiology. 2019;10:2720.
79. Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infection and immunity. 2004;72(12):7107-14.
80. Fresno S, Jimenez N, Izquierdo L, Merino S, Corsaro MM, De Castro C, et al. The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology. 2006;152(6):1807-18.
81. Pilonieta MC, Erickson KD, Ernst RK, Detweiler CS. A protein important for antimicrobial peptide resistance, YdeI/OmdA, is in the periplasm and interacts with OmpD/NmpC. Journal of bacteriology. 2009;191(23):7243-52.
82. Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA, Albertí S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrobial agents and chemotherapy. 2010;54(1):177-83.
83. Ni W, Li Y, Guan J, Zhao J, Cui J, Wang R, et al. Effects of efflux pump inhibitors on colistin resistance in multidrug-resistant Gram-negative bacteria. Antimicrobial agents and chemotherapy. 2016;60(5):3215-8.
84. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983;11(6):315-7.
85. Mugnaioli C, Luzzaro F, De Luca F, Brigante G, Perilli M, Amicosante G, et al. CTX-M-type extended-spectrum β-lactamases in Italy: molecular epidemiology of an emerging countrywide problem. Antimicrobial agents and chemotherapy. 2006;50(8):2700-6.
86. Naas T, Nordmann P. Analysis of a carbapenem-hydrolyzing class A beta-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proceedings of the National Academy of Sciences. 1994;91(16):7693-7.
87. van Duin D, Kaye KS, Neuner EA, Bonomo RA. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagnostic microbiology and infectious disease. 2013;75(2):115-20.
88. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clinical infectious diseases. 2011;53(1):60-7.
89. Kontopidou F, Plachouras D, Papadomichelakis E, Koukos G, Galani I, Poulakou G, et al. Colonization and infection by colistin‐resistant Gram‐negative bacteria in a cohort of critically ill patients. Clinical Microbiology and Infection. 2011;17(11):E9-E11.
90. Walkty A, DeCorby M, Nichol K, Karlowsky J, Hoban D, Zhanel G. In vitro activity of colistin (polymyxin E) against 3,480 isolates of gram-negative bacilli obtained from patients in Canadian hospitals in the CANWARD study, 2007-2008. Antimicrobial agents and chemotherapy. 2009;53(11):4924-6.
91. Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). Journal of Antimicrobial Chemotherapy. 2011;66(9):2070-4.
92. Lamousin-White M, O'Callaghan RJ. Association between colistin resistance and broad-spectrum recipient deficiency in Klebsiella pneumoniae. Antimicrobial agents and chemotherapy. 1986;30(6):964-5.
93. Arduino SM, Quiroga MP, Ramírez MS, Merkier AK, Errecalde L, Di Martino A, et al. Transposons and integrons in colistin-resistant clones of Klebsiella pneumoniae and Acinetobacter baumannii with epidemic or sporadic behaviour. Journal of medical microbiology. 2012;61(10):1417-20.
94. Cannatelli A, D'Andrea MM, Giani T, Di Pilato V, Arena F, Ambretti S, et al. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrobial agents and chemotherapy. 2013;57(11):5521-6.
95. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, et al. PmrA–PmrB‐regulated genes necessary for 4‐aminoarabinose lipid A modification and polymyxin resistance. Molecular microbiology. 1998;27(6):1171-82.
96. Breazeale SD, Ribeiro AA, Raetz CR. Origin of Lipid A Species Modified with 4-Amino-4-deoxy-l-arabinose in Polymyxin-resistant Mutants of Escherichia coli: an aminotransferase (ArnB) that generates UDP-4-amino-4-deoxy-l-arabinose. Journal of Biological Chemistry. 2003;278(27):24731-9.
97. Choi M-J, Ko KS. Mutant prevention concentrations of colistin for Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae clinical isolates. Journal of Antimicrobial Chemotherapy. 2014;69(1):275-7.
98. Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2009;53(12):5150-4.
99. Lee J-Y, Ko KS. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates. Diagnostic microbiology and infectious disease. 2014;78(3):271-6.
100. Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrobial agents and chemotherapy. 2013;57(5):2204-15.
101. Burckhardt RM, Escalante-Semerena JC. Small-molecule acetylation by GCN5-related N-acetyltransferases in bacteria. Microbiology and Molecular Biology Reviews. 2020;84(2):e00090-19.
102. Kim Y, Bae IK, Lee H, Jeong SH, Yong D, Lee K. In vivo emergence of colistin resistance in Acinetobacter baumannii clinical isolates of sequence type 357 during colistin treatment. Diagnostic microbiology and infectious disease. 2014;79(3):362-6.
103. Rolain J-M, Diene SM, Kempf M, Gimenez G, Robert C, Raoult D. Real-time sequencing to decipher the molecular mechanism of resistance of a clinical pan-drug-resistant Acinetobacter baumannii isolate from Marseille, France. Antimicrobial agents and chemotherapy. 2013;57(1):592-6.
104. Moffatt JH, Harper M, Adler B, Nation RL, Li J, Boyce JD. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2011;55(6):3022-4.
105. Meletis G, Tzampaz E, Sianou E, Tzavaras I, Sofianou D. Colistin heteroresistance in carbapenemase-producing Klebsiella pneumoniae. Journal of antimicrobial chemotherapy. 2011;66(4):946-7.
106. Poudyal A, Howden BP, Bell JM, Gao W, Owen RJ, Turnidge JD, et al. In vitro pharmacodynamics of colistin against multidrug-resistant Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy. 2008;62(6):1311-8.
107. Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infection and drug resistance. 2019;12:965.
108. Dortet L, Broda A, Bernabeu S, Glupczynski Y, Bogaerts P, Bonnin R, et al. Optimization of the MALDIxin test for the rapid identification of colistin resistance in Klebsiella pneumoniae using MALDI-TOF MS. Journal of Antimicrobial Chemotherapy. 2020;75(1):110-6.
109. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet infectious diseases. 2016;16(2):161-8.
110. Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerging microbes & infections. 2018;7(1):122.
111. Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current update on intrinsic and acquired colistin resistance mechanisms in bacteria. Frontiers in Medicine. 2021;8.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Modern Medical Laboratory Journal