Volume 4, Issue 2 (Summer-Fall 2021)                   Mod Med Lab J 2021, 4(2): 28-35 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Keshavarz Alikhani H, Zargan J, Bidmeshkipour A, Zamani E, Mosavi M, Heidari A et al . Iranian Scorpion (Odontobuthus bidentatus) crude venom change the redox potential of MCF-7 breast cancer cell line and induce apoptosis. Mod Med Lab J 2021; 4 (2) :28-35
URL: http://modernmedlab.com/article-1-107-en.html
Abstract:   (998 Views)
New natural substances obtained from scorpion venoms could be promising approaches for the treatment of cancers. Scorpion venom is a fully mixed compound that containing enzymes, non-enzymes, ions, and other organic compounds that induces apoptosis and necrosis in mammalian cells. In this study, the cytotoxicity effects, redox potential, and the ability of apoptosis induction of Odontobuthus bidentatus scorpion venom on MCF-7 cells were investigated. To do this, the MCF-7 cells were treated with the scorpion venom. MTT and neutral red assays was used to evaluate the cytotoxicity. Catalase, GSH and NO assays are used to determine the cells redox potential. Caspase-3 and cytochrome c release assays were exploited to investigate the apoptosis. The results of MTT and neutral red tests showed that O. bidentatus crude venom has cytotoxic effects on MCF-7 cells. Moreover, the results of catalase, GSH and NO assays showed that the crude venom could change the redox potential of MCF-7 cells, dose dependently which eventually lead to apoptosis. Also, the results of caspase-3 and the release of cytochrome c confirmed cell apoptosis. These results suggest that O. bidentatus venom is a suitable source of apoptosis-inducing compounds.
Full-Text [PDF 521 kb]   (548 Downloads)    
Type of Study: Original Research Article | Subject: Medical Sciences

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for clinicians. 2019;69(1):7-34. [DOI:10.3322/caac.21551]
2. Zendehdel K. Cancer statistics in IR Iran in 2018. Basic & Clinical Cancer Research. 2019;11(1):1-4. [DOI:10.18502/bccr.v11i1.1645]
3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a cancer journal for clinicians. 2020;70(1):7-30. [DOI:10.3322/caac.21590]
4. Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE, et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. Journal of oncology. 2011;2011. [DOI:10.1155/2011/941876]
5. Karikas G. Anticancer and chemopreventing natural products: some biochemical and therapeutic aspects. J BUON. 2010;15(4):627-38. [Article]
6. Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiology and Prevention Biomarkers. 1996;5(9):733-48. [Article]
7. Heinonen S-M, Wähälä K, Adlercreutz H. Identification of urinary metabolites of the red clover isoflavones formononetin and biochanin A in human subjects. Journal of Agricultural and Food Chemistry. 2004;52(22):6802-9. [DOI:10.1021/jf0492767]
8. Li L, Huang J, Lin Y. Snake venoms in cancer therapy: past, present and future. Toxins. 2018;10(9):346. [DOI:10.3390/toxins10090346]
9. Ding J, Chua P-J, Bay B-H, Gopalakrishnakone P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental biology and medicine. 2014;239(4):387-93. [DOI:10.1177/1535370213513991]
10. Gomes A, Bhattacharjee P, Mishra R, Biswas AK, Dasgupta SC, Giri B, et al. Anticancer potential of animal venoms and toxins. 2010. [Article]
11. Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon. 2015;93:125-35. [DOI:10.1016/j.toxicon.2014.11.233]
12. Liu Z, Tao J, Ye P, Ji Y. Mining the virgin land of neurotoxicology: a novel paradigm of neurotoxic peptides action on glycosylated voltage-gated sodium channels. Journal of Toxicology. 2012;2012. [DOI:10.1155/2012/843787]
13. Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. Journal of toxicology. 2013;2013. [DOI:10.1155/2013/958797]
14. Cohen G, Burks SR, Frank JA. Chlorotoxin—A multimodal imaging platform for targeting glioma tumors. Toxins. 2018;10(12):496. [DOI:10.3390/toxins10120496]
15. Liou G-Y, Storz P. Reactive oxygen species in cancer. Free radical research. 2010;44(5):479-96. [DOI:10.3109/10715761003667554]
16. de Pinto MC, Tommasi F, De Gara L. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant physiology. 2002;130(2):698-708. [DOI:10.1104/pp.005629]
17. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug resistance updates. 2004;7(2):97-110. [DOI:10.1016/j.drup.2004.01.004]
18. Lourenco WR, Pezier A. Taxonomic consideration of the genus Odontobuthus Vachon (Scorpiones, Buthidae), with description of a new species. Revue suisse de Zoologie. 2002;109(1):115-25. [DOI:10.5962/bhl.part.79581]
19. Kruger NJ. The Bradford method for protein quantitation. The protein protocols handbook: Springer; 2009. p. 17-24. [DOI:10.1007/978-1-59745-198-7_4]
20. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods. 1983;65(1-2):55-63. [DOI:10.1016/0022-1759(83)90303-4]
21. Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature protocols. 2008;3(7):1125-31. [DOI:10.1038/nprot.2008.75]
22. Ding AH, Nathan CF, Stuehr D. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. The Journal of Immunology. 1988;141(7):2407-12. [Article]
23. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry. 1968;25:192-205. [DOI:10.1016/0003-2697(68)90092-4]
24. Sinha AK. Colorimetric assay of catalase. Analytical biochemistry. 1972;47(2):389-94. [DOI:10.1016/0003-2697(72)90132-7]
25. Al-Asmari A, Khan H, Manthiri R. Effect of Androctonus bicolor scorpion venom on serum electrolytes in rats: a 24-h time–course study. Human & experimental toxicology. 2016;35(3):293-6. [DOI:10.1177/0960327115584688]
26. Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S. Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Molecular pharmacology. 2004;65(3):630-8. [DOI:10.1124/mol.65.3.630]
27. Deshane J, Garner CC, Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. Journal of biological chemistry. 2003;278(6):4135-44. [DOI:10.1074/jbc.M205662200]
28. Gupta SD, Gomes A, Debnath A, Saha A, Gomes A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chemico-biological interactions. 2010;183(2):293-303. [DOI:10.1016/j.cbi.2009.11.006]
29. Alikhani HK, Bidmeshkipour A, Zargan J. Cytotoxic and apoptotic induction effects of the venom of Iranian scorpion (Odontobuthus bidentatus) in the Hepatocellular carcinoma cell line (HepG2). International Journal of Peptide Research Therapeutics. 2020:1-10. [DOI:10.1007/s10989-020-10029-3]
30. Salarian AA, Jalali A, Mirakabadi AZ, Vatanpour H, Shirazi FH. Cytotoxic effects of two Iranian scorpions Odontobuthusdoriae and Bothutus saulcyi on five human cultured cell lines and fractions of toxic venom. Iranian journal of pharmaceutical research: IJPR. 2012;11(1):357. [Article]
31. Salehi-Najafabadi Z, Goudarzi HR, Sajadi M. Evaluation of in vivo Lethality and in vitro Cytotoxic Effect of Odontobuthus bidentatus Scorpion Venom. Archives of Razi Institute. 2022;77(1):19-26. [DOI:10.22092/ARI.2021.353302.1595]
32. Zargan J, Umar S, Sajad M, Naime M, Ali S, Khan HA. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicology in Vitro. 2011;25(8):1748-56. [DOI:10.1016/j.tiv.2011.09.002]
33. Jiang X, Zheng D, Lin J. Effects of nitric oxide on mitochondrial permeability transition and cytochrome C of human hepatocellular carcinoma cell lines. Zhongguo yi xue ke xue Yuan xue bao Acta Academiae Medicinae Sinicae. 2004;26(5):519-23. [Article]
34. Zargan J, Sajad M, Umar S, Naime M, Ali S, Khan HA. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Molecular and cellular biochemistry. 2011;348(1):173-81. [DOI:10.1007/s11010-010-0652-x]
35. Deichman GI, editor Early phenotypic changes of in vitro transformed cells during in vivo progression: possible role of the host innate immunity. Seminars in cancer biology; 2002: Elsevier. [DOI:10.1016/S1044-579X(02)00018-4]
36. Abdel-Rahman MA, Omran MAA, Abdel-Nabi IM, Nassier OA, Schemerhorn BJ. Neurotoxic and cytotoxic effects of venom from different populations of the Egyptian Scorpio maurus palmatus. Toxicon. 2010;55(2-3):298-306. [DOI:10.1016/j.toxicon.2009.08.003]
37. Franco R, Cidlowski J. Apoptosis and glutathione: beyond an antioxidant. Cell Death & Differentiation. 2009;16(10):1303-14. [DOI:10.1038/cdd.2009.107]
38. Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2012;1823(10):1767-77. [DOI:10.1016/j.bbamcr.2012.06.019]
39. Akef H, Kotb N, Abo-Elmatty D, Salem S. Anti-proliferative effects of androctonus amoreuxi scorpion and cerastes cerastes snake venoms on human prostate cancer cells. Journal of cancer prevention. 2017;22(1):40. [DOI:10.15430/JCP.2017.22.1.40]
40. Sifi A, Adi-Bessalem S, Laraba-Djebari F. Role of angiotensin II and angiotensin type-1 receptor in scorpion venom-induced cardiac and aortic tissue inflammation. Experimental and molecular pathology. 2017;102(1):32-40. [DOI:10.1016/j.yexmp.2016.11.006]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Modern Medical Laboratory Journal