Volume 3, Issue 2 (Summer-Fall 2020)                   Mod Med Lab J 2020, 3(2): 100-110 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nemati A, Aghajanzadeh M S, Rooberahan M. An Overview on Cancer Diagnosis based on Antibody-Based Immune Techniques. Mod Med Lab J 2020; 3 (2) :100-110
URL: http://modernmedlab.com/article-1-101-en.html
Abstract:   (1485 Views)
Cancer is known as a second-high fatal disease after cardiovascular disease in the world. Although many techniques have been investigated for the treatment of cancer, none of them satisfied completely. Investigation of a cancer diagnosis is the new pathway to cancer therapy. It has been known that cancer diagnosis at its early stage could help eradicate it in the patientchr('39')s body. Among different techniques that have been investigated for cancer diagnosis in its early stages, immune assay techniques due to high sensitivity and selectivity have been comprised. This review investigates new immune assay techniques and their combination with others as a new cancer diagnosis method.
Full-Text [PDF 415 kb]   (624 Downloads)    
Type of Study: Review | Subject: Immunology

1. Zaorsky NG, Churilla T, Egleston B, Fisher S, Ridge J, Horwitz E, et al. Causes of death among cancer patients. Annals of oncology. 2017;28(2):400-7. [DOI:10.1093/annonc/mdw604]
2. Chari ST, Kelly K, Hollingsworth MA, Thayer SP, Ahlquist DA, Andersen DK, et al. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44(5):693. [DOI:10.1097/MPA.0000000000000368]
3. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, et al. The case for early detection. Nature reviews cancer. 2003;3(4):243-52. [DOI:10.1038/nrc1041]
4. Beetz O, Klein M, Schrem H, Gwiasda J, Vondran FW, Oldhafer F, et al. Relevant prognostic factors influencing outcome of patients after surgical resection of distal cholangiocarcinoma. BMC surgery. 2018;18(1):1-10. [DOI:10.1186/s12893-018-0384-5]
5. Virnig BA, Baxter NN, Habermann EB, Feldman RD, Bradley CJ. A matter of race: early-versus late-stage cancer diagnosis. Health affairs. 2009;28(1):160-8. [DOI:10.1377/hlthaff.28.1.160]
6. Kitano M, Yoshida T, Itonaga M, Tamura T, Hatamaru K, Yamashita Y. Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer. Journal of gastroenterology. 2019;54(1):19-32. [DOI:10.1007/s00535-018-1519-2]
7. Huguet JM, Lobo M, Labrador JM, Boix C, Albert C, Ferrer-Barceló L, et al. Diagnostic-therapeutic management of bile duct cancer. World journal of clinical cases. 2019;7(14):1732. [DOI:10.12998/wjcc.v7.i14.1732]
8. Shah TA, Guraya SS. Breast cancer screening programs: Review of merits, demerits, and recent recommendations practiced across the world. Journal of microscopy and ultrastructure. 2017;5(2):59-69. [DOI:10.1016/j.jmau.2016.10.002]
9. Zhang L, Sanagapalli S, Stoita A. Challenges in diagnosis of pancreatic cancer. World journal of gastroenterology. 2018;24(19):2047. [DOI:10.3748/wjg.v24.i19.2047]
10. Wishart DS. Is cancer a genetic disease or a metabolic disease? EBioMedicine. 2015;2(6):478-9. [DOI:10.1016/j.ebiom.2015.05.022]
11. Wheeler DA, Wang L. From human genome to cancer genome: the first decade. Genome research. 2013;23(7):1054-62. [DOI:10.1101/gr.157602.113]
12. Wenk GL. Neuropathologic changes in Alzheimer's disease. Journal of Clinical Psychiatry. 2003;64:7-10. [Google Scholar]
13. Johnson TS, Xiang S, Dong T, Huang Z, Cheng M, Wang T, et al. Combinatorial analyses reveal cellular composition changes have different impacts on transcriptomic changes of cell type specific genes in Alzheimer’s Disease. Scientific Reports. 2021;11(1):1-19. [DOI:10.1038/s41598-020-79740-x]
14. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138(6):2044-58. [DOI:10.1053/j.gastro.2010.01.054]
15. Zhao H, Li H. Meta-analysis of ultrasound for cervical lymph nodes in papillary thyroid cancer: diagnosis of central and lateral compartment nodal metastases. European journal of radiology. 2019;112:14-21. [DOI:10.1016/j.ejrad.2019.01.006]
16. Zhang X, Li H, Wang C, Cheng W, Zhu Y, Li D, et al. Evaluating the Accuracy of Breast Cancer and Molecular Subtype Diagnosis by Ultrasound Image Deep Learning Model. Frontiers in oncology. 2021;11:606. [DOI:10.3389/fonc.2021.623506]
17. Houssami N, Turner RM, Morrow M. Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast cancer research and treatment. 2017;165(2):273-83. [DOI:10.1007/s10549-017-4324-3]
18. Kuhl CK. Abbreviated magnetic resonance imaging (MRI) for breast cancer screening: rationale, concept, and transfer to clinical practice. Annual review of medicine. 2019;70:501-19. [DOI:10.1146/annurev-med-121417-100403]
19. Lee JH, Ha EJ, Kim JH. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT. European radiology. 2019;29(10):5452-7. [DOI:10.1007/s00330-019-06098-8]
20. Trinh TW, Glazer DI, Sadow CA, Sahni VA, Geller NL, Silverman SG. Bladder cancer diagnosis with CT urography: test characteristics and reasons for false-positive and false-negative results. Abdominal Radiology. 2018;43(3):663-71. [DOI:10.1007/s00261-017-1249-6]
21. Halvaei S, Daryani S, Eslami-S Z, Samadi T, Jafarbeik-Iravani N, Bakhshayesh TO, et al. Exosomes in cancer liquid biopsy: a focus on breast cancer. Molecular Therapy-Nucleic Acids. 2018;10:131-41. [DOI:10.1016/j.omtn.2017.11.014]
22. Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Human genomics. 2019;13(1):1-10. [DOI:10.1186/s40246-019-0220-8]
23. Fiala C, Diamandis EP. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC medicine. 2018;16(1):1-10. [DOI:10.1186/s12916-018-1157-9]
24. Liu J, Wang Y, Liu X, Yuan Q, Zhang Y, Li Y. Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis. Talanta. 2019;199:573-80. [DOI:10.1016/j.talanta.2019.03.018]
25. Kabel AM. Tumor markers of breast cancer: New prospectives. Journal of Oncological Sciences. 2017;3(1):5-11. [DOI:10.1016/j.jons.2017.01.001]
26. Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. Journal of clinical oncology. 2006;24(33):5313-27. [DOI:10.1200/JCO.2006.08.2644]
27. Jeong S, Park M-J, Song W, Kim H-S. Current immunoassay methods and their applications to clinically used biomarkers of breast cancer. Clinical biochemistry. 2020;78:43-57. [DOI:10.1016/j.clinbiochem.2020.01.009]
28. Zong C, Wu J, Wang C, Ju H, Yan F. Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening. Analytical chemistry. 2012;84(5):2410-5. [DOI:10.1021/ac203179g]
29. Liu C, Xu X, Li B, Situ B, Pan W, Hu Y, et al. Single-exosome-counting immunoassays for cancer diagnostics. Nano letters. 2018;18(7):4226-32. [DOI:10.1021/acs.nanolett.8b01184]
30. Menard S, Canevari S, Colnaghi M. Hybrid antibodies in cancer diagnosis and therapy. The International journal of biological markers. 1989;4(3):131-4. [Google Scholar]
31. Sadri B, Nouraein S, Khodaei T, Vahedi N, Mohammadi J. Antibody-Based Targeted Therapy: A Novel Cancer Treatment. 2020. [Google Scholar]
32. Goldenberg DM. Monoclonal antibodies in cancer detection and therapy. The American journal of medicine. 1993;94(3):297-312. [DOI:10.1016/0002-9343(93)90062-t]
33. Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR journal. 2005;46(3):258-68. [DOI:10.1093/ilar.46.3.258]
34. Borrebaeck CA. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nature Reviews Cancer. 2017;17(3):199. [DOI:10.1038/nrc.2016.153]
35. Sutandy FR, Qian J, Chen CS, Zhu H. Overview of protein microarrays. Current protocols in protein science. 2013;72(1):27.1. 1-.1. 16. [DOI:10.1002/0471140864.ps2701s72]
36. Shukla HD. Comprehensive analysis of cancer-proteogenome to identify biomarkers for the early diagnosis and prognosis of cancer. Proteomes. 2017;5(4):28. [DOI:10.3390/proteomes5040028]
37. Shruthi BS, Palani Vinodhkumar S. Proteomics: A new perspective for cancer. Advanced biomedical research. 2016;5. [DOI:10.4103/2277-9175.180636]
38. Anderson KS, Ramachandran N, Wong J, Raphael JV, Hainsworth E, Demirkan G, et al. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. Journal of proteome research. 2008;7(4):1490-9 [DOI:10.1021/pr700804c]
39. Zarogoulidis P, Tsakiridis K, Karapantzou C, Lampaki S, Kioumis I, Pitsiou G, et al. Use of proteins as biomarkers and their role in carcinogenesis. Journal of Cancer. 2015;6(1):9. [DOI:10.7150/jca.10560]
40. Stefancu A, Moisoiu V, Couti R, Andras I, Rahota R, Crisan D, et al. Combining SERS analysis of serum with PSA levels for improving the detection of prostate cancer. Nanomedicine. 2018;13(19):2455-67. [DOI:10.2217/nnm-2018-0127]
41. Culig Z, Puhr M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Molecular and cellular endocrinology. 2018;462:25-30. [DOI:10.1016/j.mce.2017.03.012]
42. Da Hyun Kang C-KP, Chung C, Oh I-J, Kim Y-C, Park D, Kim J, et al. Baseline Serum Interleukin-6 Levels Predict the Response of Patients with Advanced Non-small Cell Lung Cancer to PD-1/PD-L1 Inhibitors. Immune Network. 2020;20(3). [DOI:10.4110/in.2020.20.e27]
43. Chakraborty B, Vishnoi G, Gowda SH, Goswami B. Interleukin‐6 gene‐174 G/C promoter polymorphism and its association with clinical profile of patients with multiple myeloma. Asia‐Pacific Journal of Clinical Oncology. 2017;13(5):e402-e7. [DOI:10.1111/ajco.12290]
44. Kays JK, Koniaris LG, Cooper CA, Pili R, Jiang G, Liu Y, et al. The combination of low skeletal muscle mass and high tumor interleukin-6 associates with decreased survival in clear cell renal cell carcinoma. Cancers. 2020;12(6):1605. [DOI:10.3390/cancers12061605]
45. Miller JC, Zhou H, Kwekel J, Cavallo R, Burke J, Butler EB, et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics. 2003;3(1):56-63. [DOI:10.1002/pmic.200390009]
46. Wingren C, Sandström A, Segersvärd R, Carlsson A, Andersson R, Löhr M, et al. Identification of serum biomarker signatures associated with pancreatic cancer. Cancer research. 2012;72(10):2481-90. [DOI:10.1158/0008-5472.CAN-11-2883]
47. Kikuyama M, Kamisawa T, Kuruma S, Chiba K, Kawaguchi S, Terada S, et al. Early Diagnosis to Improve the Poor Prognosis of Pancreatic Cancer. Cancers. 2018;10(2):48. [DOI:10.3390/cancers10020048]
48. Puig-Costa M, Codina-Cazador A, Cortés-Pastoret E, Oliveras-Ferraros C, Cufí S, Flaquer S, et al. Discovery and validation of an INflammatory PROtein-driven GAstric cancer Signature (INPROGAS) using antibody microarray-based oncoproteomics. Oncotarget. 2014;5(7):1942. [DOI:10.18632/oncotarget.1879]
49. Quan X, Ding Y, Feng R, Zhu X, Zhang Q. Expression profile of cytokines in gastric cancer patients using proteomic antibody microarray. Oncology letters. 2017;14(6):7360-6. [DOI:10.3892/ol.2017.7104]
50. Srinivasan H, Allory Y, Sill M, Vordos D, Alhamdani MSS, Radvanyi F, et al. Prediction of recurrence of non muscle‐invasive bladder cancer by means of a protein signature identified by antibody microarray analyses. Proteomics. 2014;14(11):1333-42. [DOI:10.1002/pmic.201300320]
51. Khan SA, Reddy D, Gupta S. Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment? World journal of biological chemistry. 2015;6(4):333. [DOI:10.4331/wjbc.v6.i4.333]
52. Chen Z, Dodig-Crnković T, Schwenk JM, Tao S-c. Current applications of antibody microarrays. Clinical proteomics. 2018;15(1):1-15. [DOI:10.1186/s12014-018-9184-2]
53. Shi Y, Ma Z, Cheng Q, Wu Y, Parris AB, Kong L, et al. FGFR1 overexpression renders breast cancer cells resistant to metformin through activation of IRS1/ERK signaling. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2021;1868(1):118877. [DOI:10.1016/j.bbamcr.2020.118877]
54. Banys-Paluchowski M, Milde-Langosch K, Fehm T, Witzel I, Oliveira-Ferrer L, Schmalfeldt B, et al. Clinical relevance of H-RAS, K-RAS, and N-RAS mRNA expression in primary breast cancer patients. Breast cancer research and treatment. 2020;179(2):403-14. [DOI:10.1007/s10549-019-05474-8]
55. Doll S, Gnad F, Mann M. The Case for Proteomics and Phospho‐Proteomics in Personalized Cancer Medicine. PROTEOMICS–Clinical Applications. 2019;13(2):1800113. [DOI:10.1002/prca.201800113]
56. Wang Y, Zhang J, Li B, He QY. Advances of proteomics in novel PTM discovery: applications in cancer therapy. Small Methods. 2019;3(5):1900041. [DOI:10.1002/smtd.201900041]
57. Gil J, Ramírez-Torres A, Encarnación-Guevara S. Lysine acetylation and cancer: a proteomics perspective. Journal of proteomics. 2017;150:297-309. [DOI:10.1016/j.jprot.2016.10.003]
58. Greville G, McCann A, Rudd PM, Saldova R. Epigenetic regulation of glycosylation and the impact on chemo-resistance in breast and ovarian cancer. Epigenetics. 2016;11(12):845-57. [DOI:10.1080/15592294.2016.1241932]
59. Razmi N, Hasanzadeh M. Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches. TrAC Trends in Analytical Chemistry. 2018;108:1-12. [DOI:10.1016/j.trac.2018.08.017]
60. Elshafey R, Tavares AC, Siaj M, Zourob M. Electrochemical impedance immunosensor based on gold nanoparticles–protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosensors and Bioelectronics. 2013;50:143-9. [DOI:10.1016/j.bios.2013.05.063]
61. Pakchin PS, Ghanbari H, Saber R, Omidi Y. Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosensors and Bioelectronics. 2018;122:68-74. [DOI:10.1016/j.bios.2018.09.016]
62. Liu S, Ma Y, Cui M, Luo X. Enhanced electrochemical biosensing of alpha-fetoprotein based on three-dimensional macroporous conducting polymer polyaniline. Sensors and Actuators B: Chemical. 2018;255:2568-74. [DOI:10.1016/j.snb.2017.09.062]
63. Filik H, Avan AA. Nanostructures for nonlabeled and labeled electrochemical immunosensors: Simultaneous electrochemical detection of cancer markers: A review. Talanta. 2019;205:120153. [DOI:10.1016/j.talanta.2019.120153]
64. Felix FS, Angnes L. Electrochemical immunosensors–a powerful tool for analytical applications. Biosensors and Bioelectronics. 2018;102:470-8. [DOI:10.1016/j.bios.2017.11.029]
65. Jayanthi VSA, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosensors and Bioelectronics. 2017;91:15-23. [DOI:10.1016/j.bios.2016.12.014]
66. Su L, Fong C-C, Cheung P-Y, Yang M. Development of novel piezoelectric biosensor using pzt ceramic resonator for detection of cancer markers. Biosensors and biodetection: Springer; 2017. p. 277-91. [DOI:10.1007/978-1-4939-6911-1_19]
67. Sharma S, Byrne H, O'Kennedy RJ. Antibodies and antibody-derived analytical biosensors. Essays in biochemistry. 2016;60(1):9-18. [DOI:10.1042/EBC20150002]
68. Spain E, Gilgunn S, Sharma S, Adamson K, Carthy E, O’Kennedy R, et al. Detection of prostate specific antigen based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Biosensors and Bioelectronics. 2016;77:759-66. [DOI:10.1016/j.bios.2015.10.058]
69. Arkan E, Saber R, Karimi Z, Shamsipur M. A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Analytica chimica acta. 2015;874:66-74. [DOI:10.1016/j.aca.2015.03.022]
70. Yadav AR, Mohite SK. Carbon nanotubes as an effective solution for cancer therapy. Research Journal of Pharmaceutical Dosage Forms and Technology. 2020;12(4):301-7. [DOI:10.5958/0975-4377.2020.00050.6]
71. Bafna S, Kaur S, Batra SK. Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene. 2010;29(20):2893-904. [DOI:10.1038/onc.2010.87]
72. Cristea C, Florea A, Galatus R, Bodoki E, Sandulescu R, Moga D, et al., editors. Innovative Immunosensors for Early Stage Cancer Diagnosis and Therapy Monitoring. The International Conference on Health Informatics; 2014: Springer. [DOI:10.1007/978-3-319-03005-0_13]
73. Rusling JF, Bishop GW, Doan NM, Papadimitrakopoulos F. Nanomaterials and biomaterials in electrochemical arrays for protein detection. Journal of Materials Chemistry B. 2014;2(1):12-30. [DOI:10.1039/C3TB21323D]
74. O'Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nature reviews Clinical oncology. 2017;14(3):169. [DOI:10.1038/nrclinonc.2016.162]
75. Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery. Advanced drug delivery reviews. 2014;66:90-100. [DOI:10.1016/j.addr.2013.09.007]
76. Quillard T, Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circulation research. 2012;111(2):231-44. [DOI:10.1161/CIRCRESAHA.112.268144]
77. Chen Y-C, Tan X, Sun Q, Chen Q, Wang W, Fan X. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nature biomedical engineering. 2017;1(9):724-35. [DOI:10.1038/s41551-017-0128-3]
78. Manaph NPA, Al-Hawwas M, Bobrovskaya L, Coates PT, Zhou X-F. Urine-derived cells for human cell therapy. Stem cell research & therapy. 2018;9(1):1-12. [DOI:10.1186/s13287-018-0932-z]
79. Di Meo A, Bartlett J, Cheng Y, Pasic MD, Yousef GM. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Molecular cancer. 2017;16(1):1-14. [DOI:10.1186/s12943-017-0644-5]
80. Ji X, Wang M, Chen F, Zhou J. Urine-derived stem cells: the present and the future. Stem cells international. 2017;2017. [DOI:10.1155/2017/4378947]
81. Chandrapalan S, Arasaradnam RP. Urine as a biological modality for colorectal cancer detection. Expert review of molecular diagnostics. 2020;20(5):489-96. [DOI:10.1080/14737159.2020.1738928]
82. Wu D, Ni J, Beretov J, Cozzi P, Willcox M, Wasinger V, et al. Urinary biomarkers in prostate cancer detection and monitoring progression. Critical reviews in oncology/hematology. 2017;118:15-26. [DOI:10.1016/j.critrevonc.2017.08.002]
83. Woo H-K, Park J, Ku JY, Lee CH, Sunkara V, Ha HK, et al. Urine-based liquid biopsy: non-invasive and sensitive AR-V7 detection in urinary EVs from patients with prostate cancer. Lab on a Chip. 2019;19(1):87-97. [DOI:10.1039/c8lc01185k]
84. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nature reviews Clinical oncology. 2017;14(9):531-48. [DOI:10.1038/nrclinonc.2017.14]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Modern Medical Laboratory Journal