Volume 5, Issue 2 (Summer-Fall 2022)                   Mod Med Lab J 2022, 5(2): 47-55 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousefi R, Kabiri Renani M, Koohkan F, Heidari M, Asad S, Hosseinzadeh S et al . Knockdown of HSF1 sensitizes resistant prostate cancer cell line to chemotherapy. Mod Med Lab J 2022; 5 (2) :47-55
URL: http://modernmedlab.com/article-1-110-en.html
Abstract:   (786 Views)
The treatment of prostate cancer patients usually starts with androgen ablation and followed by chemotherapy; however, in some cases the tumor develops resistant phenotype. Combination therapy is currently regarded as a cornerstone in cancer therapy to overcome the drug resistance. Herein, we investigated the combinatory effect of Docetaxel and Trastuzumab with a novel nanomedicine, BCc1. Also, we knocked down the expression of Heat shock factor-1, HSF1, in resistant Prostate Cancer cell line 3, PC3, using RNA interference, RNAi, to sensitize the cancer cells to the drug treatment. We observed down-regulation of Erb-B2 Receptor Tyrosine Kinase 3, ERBB3, B-Cell Leukemia/Lymphoma 2, BCL2, and Heat Shock Protein 90, HSP90, in HSF1 knockdown PC3 cells.  Knockdown of HSF1 made PC3 cells more susceptible to Docetaxel treatment. Additionally, BCc1 nanomedicine was tested on prostate cancer cell line PC3 for the first time. It resulted in reduced metabolic activity in these cells.  We propose that a combination of the gene therapy and the chemotherapy gives more favorable results in the treatment of refractory prostate cancer.
Full-Text [PDF 508 kb]   (525 Downloads)    
Type of Study: Original Research Article | Subject: Medical Sciences

1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics. CA Cancer J Clin. 2020;70(3):145–64.
2. Tolkach Y, Kristiansen G. The Heterogeneity of Prostate Cancer: A Practical Approach. Pathobiology. 2018;85(1–2):108–16.
3. Widmark A, Klepp O, Solberg A, Damber JE, Angelsen A, Fransson P, et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. The Lancet. 2009;373(9660):301–8.
4. Tannock IF, De Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. New England Journal of Medicine. 2004;351(15):1502–12.
5. Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. International Journal of Molecular Sciences 2021, Vol 22, Page 11088.
6. Takayama K ichi, Kosaka T, Suzuki T, Hongo H, Oya M, Fujimura T, et al. Subtype-specific collaborative transcription factor networks are promoted by OCT4 in the progression of prostate cancer. Nature Communications 2021 1;12(1):1–16.
7. Lundon DJ, Boland A, Prencipe M, Hurley G, O’Neill A, Kay E, et al. The prognostic utility of the transcription factor SRF in docetaxel-resistant prostate cancer: In-vitro discovery and in-vivo validation. BMC Cancer. 2017;17(1):1–13.
8. Björk JK, Ahonen I, Mirtti T, Erickson A, Rannikko A, Bützow A, et al. Increased HSF1 expression predicts shorter disease-specific survival of prostate cancer patients following radical prostatectomy. Oncotarget. 2018;9(58):31200–13.
9. Dong B, Jaeger AM, Hughes PF, Loiselle DR, Spencer Hauck J, Fu Y, et al. Targeting therapy-resistant prostate cancer via a direct inhibitor of the human heat shock transcription factor 1. Sci Transl Med [Internet]. 2020 Dec 16;12(574).
10. Calderwood SK. HSF1, A Versatile Factor in Tumorogenesis. Curr Mol Med. 2012;12(9):1102–7.
11. Min JN, Huang L, Zimonjic DB, Moskophidis D, Mivechi NF. Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene. 2007;26(35):5086–97.
12. Dai C, Whitesell L, Rogers AB, Lindquist S. Heat Shock Factor 1 Is a Powerful Multifaceted Modifier of Carcinogenesis. Cell. 2007;130(6):1005–18.
13. Reed JC. Mechanisms of Apoptosis. Am J Pathol. 2000;157(5):1415–30.
14. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992 ;15;52(24):6940–4.
15. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–97.
16. Miyake H, Tolcher A, Gleave ME. Antisense Bcl-2 Oligodeoxynucleotides Inhibit Progression to Androgen- Independence after Castration in the Shionogi Tumor Model 1. 1999;4030–4.
17. Dorai T, Olsson CA, Katz AE, Buttyan R. Development of a Hammerhead Ribozyme Against bcl-2 . I . Preliminary Evaluation of a Potential Gene Therapeutic Agent for Hormone-Refractory Human Prostate Cancer. 1997;258:246–58.
18. Pienta KJ, Bradley D. Mechanisms Underlying the Development of Androgen-Independent Prostate Cancer. 2006;12(6):1665–72.
19. Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med. 1999.
20. Ziada A, Barqawi A, Glode LM, Varella-Garcia M, Crighton F, Majeski S, et al. The use of trastuzumab in the treatment of hormone refractory prostate cancer; phase II trial. Prostate. 2004;60(4):332–7.
21. Andersson J, Rosestedt M, Asplund V, Yavari N, Orlova A. In vitro modeling of HER2-targeting therapy in disseminated prostate cancer. Int J Oncol. 2014;45(5):2153–8.
22. Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules. 2018;23(4).
23. Sharma M, Pandey C, Sharma N, Kamal MA, Sayeed U, Akhtar S. Cancer Nanotechnology-An Excursion on Drug Delivery Systems. Anticancer Agents Med Chem. 2018;18(15):2078–92.
24. Hafizi M, Kalanaky S, Khayamzadeh M, Noorian S, Kaveh V, Gharib B, et al. A randomized, double-blind, placebo-controlled investigation of BCc1 nanomedicine effect on survival and quality of life in metastatic and non-metastatic gastric cancer patients. J Nanobiotechnology. 2019;17(1):52.
25. Fakharzadeh S, Sahraian MA, Hafizi M, Kalanaky S, Masoumi Z, Mahdavi M, et al. The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/Bl6 mice. Int J Nanomedicine. 2014;9(1):3841–53.
26. Kalanaky S, Hafizi M, Safari S, Mousavizadeh K, Kabiri M, Farsinejad A, et al. TLc-A, the leading nanochelating-based nanochelator, reduces iron overload in vitro and in vivo. Int J Hematol. 2016/02/01. 2016 Mar;103(3):274–82.
27. Kalanaky S, Hafizi M, Fakharzadeh S, Vasei M, Langroudi L, Janzamin E, et al. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo. Drug Des Devel Ther. 2015;10:59–70.
28. Hafizi M, Soleimani M, Noorian S, Kalanaky S, Fakharzadeh S, Saleh NT, et al. Effects of BCc1 nanoparticle and its mixture with doxorubicin on survival of murine 4T1 tumor model. Onco Targets Ther. 2019;12:4691–701.
29. Nazaran MH. CHELATE COMPOUNDS. Iran: United States Patent and Trademark Office; 20120100372, 2012.
30. Afrang N, Tavakoli R, Tasharrofi N, Alian A, Naderi Sohi A, Kabiri M, et al. A critical role for miR-184 in the fate determination of oligodendrocytes. Stem Cell Res Ther. 2019;10(1):1–11.
31. Tasharrofi N, Kouhkan F, Soleimani M, Soheili ZS, Kabiri M, Mahmoudi Saber M, et al. Survival Improvement in Human Retinal Pigment Epithelial Cells via Fas Receptor Targeting by miR-374a. J Cell Biochem. 2017;118(12):4854–61.
32. Kehtari M, Beiki B, Zeynali B, Hosseini FS, Soleimanifar F, Kaabi M, et al. Decellularized Wharton’s jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. J Cell Biochem. 2019;120(4):6683–97.
33. Gavrilov K, Saltzman WM. Therapeutic siRNA: Principles, challenges, and strategies. Yale Journal of Biology and Medicine. 2012;85(2):187–200.
34. Dickerson EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF. Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer. 2010;10.
35. Hoang AT, Huang J, Rudra-Ganguly N, Zheng J, Powell WC, Rabindran SK, et al. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. American Journal of Pathology. 2000;156(3):857–64.
36. Centenera MM, Fitzpatrick AK, Tilley WD, Butler LM. Hsp90: still a viable target in prostate cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2013;1835(2):211–8.
37. Jacobs AT, Marnett LJ. HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. Journal of Biological Chemistry. 2009;284(14):9176–83.
38. Catz SD, Johnson JL. BCL-2 in prostate cancer: A minireview. Apoptosis. 2003;8(1):29–37.
39. Hafizi M, Kalanaky S, Moaiery H, Khayamzadeh M, Noorian S, Kaveh V, et al. An Investigation on the Effect of BCc1 Nanomedicine on Gastric Cancer Patients Using EORTC QLQ-STO30 Questionnaire. Int J Cancer Manag. 2019;12(11).

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Modern Medical Laboratory Journal