Axolotls regenerate their brian; what can we learn from axolotls' brain?

 | Post date: 2022/09/5 | 
Axolotls have the ability to regenerate brain areas following an injury. Researchers have mapped cell types and genes associated with neurodegeneration in the axolotl brain, discovering some similarities in the human brain. The findings could pave the way for new neurodegenerative therapies. They etermined the cellular diversity of the axolotl telencephalon using single-nucleus RNA sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing (snATAC-seq), as well as spatial transcriptomics. They identified regionally distributed neuron, ependymoglia, and neuroblast populations and determined their conservation with amniotes by using comparative analyses. They found that the axolotl telencephalon contains glutamatergic neurons with transcriptional similarities to neurons of the turtle and mouse hippocampus, dorsal cortex, and olfactory cortex. Olfactory cortex–like neurons also show conserved neuronal input projections from the olfactory bulb. Axolotl γ-aminobutyric acid–releasing (GABAergic) inhibitory neurons show signatures of different subregions of the ganglionic eminence and resemble turtle and mouse GABAergic inhibitory neurons. They conclude that in the postembryonic axolotl, telencephalon neurogenesis progresses through diverse neuroblast progenitors, which are associated with specific neuron types and dependent on shared as well as specific regulatory programs. They found implementation of these same programs in regenerative neurogenesis, which indicates that brain injury activates neurogenesis through existing pathways after inducing an injury-specific ependymoglia state. Regenerated neurons reestablish their previous connections to distant brain regions, suggesting potential functional recovery. Their insight into how the axolotl brain regenerates may inform studies of brain regeneration in other organisms.
Read more


View: 375 Time(s)   |   Print: 84 Time(s)   |   Email: 0 Time(s)   |   0 Comment(s)

© 2023 CC BY-NC 4.0 | Modern Medical Laboratory Journal