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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 

December 2019 and rapidly spread worldwide. Since then, scientists have searched 

to find an effective treatment for coronavirus disease 2019 (COVID-19). In this 

regard, several antiviral drugs are currently undergoing clinical trial studies to 

evaluate their safety and efficacy in the treatment of COVID-19. Some of these 

drugs have been designed based on this fact that SARS-CoV-2 is a positive-sense 

single-stranded RNA virus and previous studies showed the efficacy of anti-RNA 

virus, single strand RNA inhibiting antisense RNAs (asRNAs), for silencing virus 

replication, in vitro. Exosomes can be suggested as a promising candidate to transfer 

the anti-SARS-CoV-2 asRNAs to human respiratory epithelium. Exosomes are 

secreted by mesenchymal stem cells (MSCs) and can be loaded by asRNAs of an 

anti-RNA virus. MSCs-secreted exosomes as a nano-cargo of asRNAs of anti-

SARS-CoV-2 have other therapeutic potentials such as immunomodulatory effects 

of their cytokine contents, affinity to respiratory epithelial attachment, anti-fibrotic 

activity in lung, non-toxicity for normal cells, and not triggering an immune 

response. Moreover, inhalation of anti-SARS-CoV-2 asRNAs may stop SARS-

CoV-2 replication. Producing specific anti-SARS-CoV-2 asRNAs by targeting the 

genome of virus and their delivery by MSCs exosomes are suggested and discussed. 

This approach will potentially shed light on gene therapy of the other human lung 

diseases via inhalational delivery using exosomes in future. 
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        Introduction 
 

Infections with the majority of respiratory viruses are 

a global health concern and are known as one of the 

main causes of death among the high-risk population 

(1). Coronavirus disease 2019 (COVID-19) is one of 

the respiratory viral infections caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), a 

disease shortly led to a catastrophic worldwide 

epidemic health problem (2). This virus belongs to the 

family of coronaviruses such as severe acute 

respiratory syndrome (SARS) and Middle-East 

respiratory syndrome (MERS) (3-5). SARS-CoV-2 is 

a positive-sense single-stranded RNA virus showing a 

high rate of pathogenesis (2). The symptoms of 

COVID-19 range from mild to severe and may include 

fever, cough, chills, shortness of breath and bilateral 

pneumonia in end-stage patients (4). Some 

therapeutics have been suggested for curing some 

symptoms of COVID-19 and other coronaviruses such 

as Remdesivir, Favipiravir and corticosteroids (6, 7). 

However, to the best of our knowledge, there has been 

few effective antiviral to treat COVID-19 (8), yet it 

needs more study.  

Anti-inflammatory and immunomodulatory effects of 

MSCs as a therapeutic approach for various types of 

respiratory diseases have been confirmed by clinical 

studies (9). Different important sources of MSCs 

including Wharton’s jelly, umbilical cord, umbilical 

cord blood, dental pulp, menstrual blood, were used in 

these clinical trials (9). Nano-size, low-toxicity and 

compatibility of MSCs-derived exosomes with the 

host immune system make them a very efficient drug 

carrier (10-12). Exosomes, including MSCs-derived 

exosomes are very complex vesicles containing 

almost 4400 proteins, 194 lipids, 1639 mRNAs, and 

764 miRNAs (13, 14). The exosomes enriched with 

various proteins including tetraspanins (CD9, CD63, 

CD81, CD82), heat shock proteins (HSP70, HSP90) 

and MVB formation proteins which are used for 

exosomes’ biological functions (14). Moreover, the 

exosomes contain different types of RNAs such as 

miRs (mostly), siRNA, ncRNAs, piRNA, and 

lncRNA (15). The MSCs-derived exosomes with 

different sources have some different biological 

activity. For example, the human umbilical cord 

stem/stromal cells (HUC)-derived exosomes showed 

to have IL-6 secretion inhibition effects which it lead 

to immunoregulation (15). In addition, the MSCs-

derived exosomes play roles in immunomodulation, 

angiogenesis promotion, interferon γ inhibition, tissue 

repair stimulation, anti-inflammation, and 

antioxidation (15, 16).  

 

 

Due to the wide biological activity of the MSCs-derived 

exosomes, they could be one of the best candidates as a 

therapeutic agent. It is also hypothesized that MSCs-

derived exosomes due to their pivotal roles in the 

inflammatory responses suppression (17) and the 

regeneration of the damaged tissue may be a future 

treatment of SARS-CoV-2 pneumonia (18). In a murine 

model, hypothalamic neural stem/progenitor cells 

exosomes/microvesicles had antiviral immunity and 

could be developed to combat against SARS-CoV-2 

(19). Furthermore, it is suggested that exosomes 

containing SARS-CoV-2 component may be capable of 

inducing immune cells responses (20). In patients of 

COVID-19, SARS and MERS, serum concentrations of 

pro-inflammatory cytokines (IL-1, IL-6, and TNF-α) 

and chemokines (IL-8) increase (21), these signs may be 

modulated by using MSCs-derived exosomes for 

transportation of asRNA, as well.  

As the target of this therapeutic approach is the infected 

epithelial cells of the respiratory tract, drug 

administration by inhalation has been suggested. 

Inhalation therapy by MMP2/9-triggered-release 

micelles had appropriate effects on lung cancer (22). 

The serum-derived exosomes were used as a vehicle to 

deliver small RNA molecules via inhalation system into 

the lung macrophages in vivo in mice for lung 

inflammation treatment (23). In our hypothesis 

exosomes containing asRNAs can introduce to patients 

through inhalation, so the asRNA may reach to the 

respiratory system more effectively.  

We hypostatized MSCs-derived exosomes can perform 

as a carrier for delivering anti-SARS-CoV-2 miR-5197-

3p to infected cells to decrease the viruses’ replication 

and transcription in vivo (24). Table 1 showed locations 

and products of single strand RNA of SARS-CoV-2 that 

can be inhibited by asRNAs detected by Ivashchenko et 

al. (24). It may be useful to exploit the MSCs-derived 

exosomes to efficiently deliver anti-SARS-CoV-2 

asRNAs for targeted drug delivery (10). In addition, 

previous studies have demonstrated that exosome-based 

drug delivery can protect exosome-encapsulating RNAs 

from RNase enzymes (25). Different exosomes with 

cell-specific surface proteins may have distinct routes 

and circulation pattern all over the body (26). 

Accordingly, it is possible to predict MSCs-derived 

exosomes contain the targeted asRNA for those viruses. 

To our knowledge, the function of these asRNA filled 

exosomes derived from MSCs has not been 

investigated.  

Human Wharton jelly-derived MSCs is one of the most 

important sources of primary MSCs that can be obtained 

from umbilical cord with standard methods (27). The 

purity of MSCs isolated is confirmed by flow cytometry 

analysis of CD markers of MSCs and hematopoietic 

stem cells.  
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In order to appraise the differentiation capabilities of 

MSCs, the cells are tested in terms of their ability for 

osteogenic, adipogenic, and chondrogenic 

differentiation. The conditioned medium (CM) is 

prepared using MSCs (28). The exosomes are isolated 

from CM by a commercial kit (29). Transmission 

electron microscopy test is used for morphological 

assessment of the isolated exosomes (30). 

 
Table 1. Locations and products of single strand RNA (ssRNA) 

of SARS-CoV-2, MERS, and SARS can be inhibited by 

antisense RNAs (asRNA) (24) 

 SARS-CoV-2 MERS SARS 

asRNA name miR-5197-3p miR-6864-5p miR-4778-3p 

asRNA 

sequence 

UAAGCUAC

UGAGUCAG

AGAAGAA 

CCGUAUAGA

CUGAACAGG

GAAGUU 

AGUUGAG

ACGUUUCC

UUC-UUCU 

Matched 

sequence of 

ssRNA 

AUUCGAAG

ACCCAGUC

CCUACUU 

GGCGUUUCU

GACUUGUCC

CUCAAA 

UCGACUCC

GCAAGGGA

GGUAGGA 

Matching (%) 89 88 91 

asRNA length 23 24 22 

Gene name spike 

glycoprotein 

orf1ab orf1ab 

Location 21874-21896 1188-1211 1450-1472 

Product of 

complete gene 

Surface- 

glycoprotein 

1AB-

polyprotein 

Counterpart-

of MHV p65 

 

Transportation of antisense RNA 

inhibiting RNAs (asRNAs) 
  

RNA viruses use intracellular host cell machinery 

for DNA replication, RNA transcription and protein 

synthesis (31). The pathogenesis of such viruses 

mainly depends on the rate of genome replication 

and cell destruction following host immune 

responses (32). Thus, blocking the viral genome 

replication and transcription can be a promising 

approach to combat the infection (33). Although, 

there are many targets to selective inhibition of 

RNA virus replication (33), anti-replication effect 

of antisense RNA inhibiting RNAs (asRNAs) as a 

non-coding RNAs (ncRNAs) has not been 

investigated for coronaviruses. Despite significant 

improvements in the field of nucleic acid-based 

therapies and the use of numerous carriers to 

transport molecules such as asRNA, studies on 

finding suitable carriers for these kinds of molecules 

are still ongoing (34). The other challenge of 

designing an anti-SARS-CoV-2 asRNA is the  

 

 

 

transportation of them into the replication site, host 

respiratory epithelial cells. The nanometer size of 

asRNAs allows them to go through the vessels and 

affect other parts of the host’s body (35), but, one of 

the main problems in the asRNA transfer, is related to 

their instability and negative charge so that even in 

the presence of a suitable transfection reagent, they 

cannot effectively penetrate the hydro¬phobic cell 

membranes (10, 36). To minimize the side effects of 

asRNAs on other tissues, a targeted drug delivery 

system can be used. Exosome-based drug delivery 

approach can be suggested as one of the best 

candidates (37). 

For this purpose, the following steps can be 

suggested: 1) production of the target asRNAs using 

a cost-effective DGCR8-independent stable asRNA 

expression (DISME) strategy (38). 2) Increasing the 

expression level of asRNAs by inserting units of a U6 

promoter-driven expression cassette in the vector 

(38). 3) Loading anti-SARS-CoV-2 miR-4778-3p in 

the exosomes using electroporation method (10). 4) 

Re-isolating the loaded exosomes using a commercial 

kit (29). 5) Estimating the amount of anti-SARS-

CoV-2 asRNAs oligonucleotides in mesenchymal 

stem cells (MSCs)-derived exosomes (10). 6) 

Exposing the asRNA loaded exosomes to SARS-

CoV-2 culture in transmembrane protease. 7) 

Analyzing serine 2 (TMPRSS2)-expressing VeroE6 

cell line and virus replication (39). 8) In vivo analysis 

of the exosomes supplemented with anti-SARS-CoV-

2 miR-4778-3p in animal model of the SARS-CoV-2 

disease including the amount, efficacy and biosafety 

of the new drug (40). 9) In vivo analysis of the cargo 

in the human body and analyze its effect on serum 

concentrations of pro-inflammatory cytokines and 

chemokines (41). All the steps should be done in the 

biology laboratory with BSL-3 or 4 level (42). 

To test the therapeutic method in animal model, two 

approved models of rhesus macaques and ferrets can 

be used (43). These models can be infected with 

SARS-CoV-2 and show virus replication and shed 

virus (43). After confirming the treatment in an 

animal model and analyzing asRNAs efficiency, the 

asRNAs encapsulated with exosomes can be 

introduced to the patient with inhalation (24). Figures 

1 and 2 show the schematic of this therapeutic 

approach. 
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Figure 1. Schematic diagram of developing a therapeutic method 

for COVID-19 using exosomes of mesenchymal stem cells as 

nano-cargos for antisense RNAs for inhibiting single strand RNA 

(ssRNA) of SARS-CoV-2. 

 
Figure 2. Schematic diagram of a methodology of a therapeutic 

method for COVID-19 using exosomes of mesenchymal stem 

cells as nano-cargos for antisense RNAs for inhibiting single 

strand RNA (ssRNA) of SARS-CoV-2 

Discussion 
 

Exosomes have been introduced as a new alternative 

to the transmission system of therapeutic molecules 

(37). Exosomes are nano-sized lipid package and 

those with 30–150 nm size are the smallest particles 

between entire exosomes (44). Exosomes are 

produced in the most eukaryotic cells (45) and are 

capable of being drug carriers since they are 

composed of cell membranes, rather than synthetic 

polymers (37). Exosomes have many functions in 

human bodies including cell to cell communication, 

wound healing, tissue regeneration and even cell 

death (46). They have some information from their 

primary parental cells (47). They can interact with 

macromolecules and serve as distributors for proteins, 

lipids, mRNA, miRNA, and DNA (48). Exosomes 

may interact with the host's immune system, so the 

selection of the parent cell for exosome production 

needs to be performed carefully (49). Application of 

human exosomes for treatment of diseases was tested  

 

 

 

in clinical trials (50) and has a developing market 

(51). 

MSCs have been used in many clinical trials of 

transplant rejection, autoimmune disorders, and 

inflammation- associated diseases (52). Currently, 

after COVID-19 endemic situation, clinical trials 

studied MSC therapy for the treatment of COVID-19 

(Table 2). It has been shown that MSC-secreted 

factors suppress T-cell proliferation (53). Therefore, 

MSCs-derived exosomes have the same properties as 

their parent cell (54) and suppress the secretion of 

tumor necrosis factor-α (TNF-α) and interleukin-1 

(IL-1) in peripheral blood mononuclear cells because 

of their immunomodulatory characteristics (54). 

Some of the earliest exosome research indicated that 

they can carry the MHC-peptide complexes, which 

are recognized by T lymphocytes (55), to activate 

more immune system cells and destroy the tumor and 

other cell contaminants (for example viruses) (56). 

However, there are some challenges in face of the 

exosome therapy. One of the biggest challenges is the 

exosome isolation at the GMP grade. However, it can 

be produced at small scale yet (57). This could be 

facilitating by exosome isolation kit with GMP grade. 

Moreover, the storage and stability of exosomes 

needs more study (58). 

The asRNAs therapy is suggested as a new method 

for controlling viral infections (59). Here, we 

hypothesized MSC derived exosomes containing 

anti- SARS-CoV-2 asRNA to be helpful for finding a 

specific treatment for COVID-19. Since the SARS-

CoV-2 genome replicates in the respiratory 

epithelium of host cells, the developed asRNAs 

should not damage the genome of host cells. Over the 

past decade, the discovery of ncRNAs including 

microRNA, small interfering RNA (siRNA), PIWI-

interacting RNA (piRNA) and long noncoding RNA 

(lncRNA) has been a well-defined research topic. 

Application of asRNAs considering the required 

purpose undergoes two challenges: 1) Binding the 

asRNA to the exact site of the RNA virus genome. 2) 

Side effects of the random binding of these asRNAs 

to human mRNAs due to the subjective set of 

nucleotides in synthetic asRNAs, which bind with 

complete complementarity (60-63). It is necessary to 

select asRNAs that can most effectively bind to the 

nucleotide sequence of the RNA genomes of these 

coronaviruses. Therefore, constructing specific 

asRNAs for coronaviruses of COVID-19, SARS, and 

MERS that will not affect the expression of human or 

animal genes is crucial (24).In this case, asRNA with 

the ability of specific binding to the viral genome, 

must be selected (24, 64). In-silico analysis showed 

that miR-5197-3p (cc-miR, fully complementary 

miRNA) has an affinity to ssRNA of SARS-CoV-2 

and miR-6864-5p and miR-4778-5p can strongly bind 

to MERS (cc-miRm) and SARS (cc-miRs) genomes, 

respectively (24) (Table 1). 
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The miR-5197-3p can bind to a few human genes with 

similar characteristic (24). In order to avoid the potential 

side effects, this asRNA has sustained some changes in 

the length and nucleotide sequences and called cc-miR2 

(fully complementary miRNA). This new asRNA is 

more efficient to bind with ssRNA of SARS-CoV-2 

without reacting with human protein coding genes and 

presenting related side effects (24). The next concern of 

this therapeutic approach is related to the possibility of 

SARS-CoV-2 genomic mutations during the worldwide 

spreading of the virus. Fortunately, comparative 

sequence analyses of SAR-CoV2 genomes isolated 

from different geographical locations have unique 

features (65). Therefore, designing a conserved cc-

miRNA is possible.  

The SARS-CoV-2 binds to epithelial cells of the nasal 

cavity after its inhalation and replicates there (66). Then, 

along the conducting airways, SARS-CoV-2 migrates 

down the respiratory tract (67). Although, the treatment 

of the lungs by inhalation is the minimally invasive and 

most direct delivery route (68), studies conducting on 

the utilize of exosomes for treatment of different kind of 

lung diseases, mainly administered exosomes 

systemically into a vein or through direct tissue 

injection. Nonetheless, innovative methods must be 

developed for the scale up of exosome production and 

isolation. 

 
Table 2. Completed, active, and recruiting clinical trials on 

mesenchymal stromal/stem cell-based therapy of COVID-19 (U. 

S. National Library of Medicine) 

  Organ system Phase Country Transplantation S CT code 

Adipose tissue 1&2 Spain Allotransplant A NCT04366323 

Adipose tissue 2 US Allotransplant A NCT04362189 

Adipose tissue 2 US Autotransplant A NCT04349631 

Adipose tissue 1 Mexico Allotransplant R NCT04611256 

Adipose tissue 

Exosome 

1 China Allotransplant C NCT04276987 

Bone marrow 1&2 Belgium Allotransplant R NCT04445454 

Bone marrow 1 Canada Allotransplant R NCT04400032 

Bone marrow 2 Pakistan Allotransplant R NCT04444271 

Bone marrow 2 Spain Allotransplant R NCT04361942 

Bone marrow 1 Sweden Allotransplant R NCT04447833 

Bone marrow 1 US Allotransplant R NCT04397796 

Bone marrow 3 US Allotransplant R NCT04371393 

Bone marrow 1 US Allotransplant R NCT04629105 

Cord blood 1 US Allotransplant R NCT04565665 

Cord tissue 1&2 US Allotransplant R NCT04399889 

Dental pulp 1&2 China Allotransplant R NCT04336254 

Extracorporeal 1&2 US Allotransplant R NCT04445220 

iPSC 1&2 Australia Allotransplant R NCT04537351 

ND 1 Indonesia Allotransplant R NCT04535856 

ND 2 Mexico Allotransplant R NCT04416139 

 

 

ND 2 Spain Allotransplant R NCT04615429 

ND 2 US Allotransplant R NCT04466098 

ND 1 Brazil Allotransplant R NCT04525378 

ND Exosome 2&3 Iran ND R NCT04366063 

ND 1&2 US Allotransplant R NCT04524962 

UC 1&2 US Allotransplant C NCT04355728 

UC 1 US Allotransplant C NCT04573270 

UC 2 China Allotransplant C NCT04288102 

UC Wharton’s 

jelly 

1&2 France Allotransplant A NCT04333368 

UC 1&2 Ukraine Allotransplant R NCT04461925 

UC 2 Germany 

Israel 

Allotransplant R NCT04614025 

UC 2 US Allotransplant R NCT04389450 

UC 1&2 China Allotransplant R NCT04339660 

UC 1 Indonesia Allotransplant R NCT04457609 

UC 2 Spain Allotransplant R NCT04366271 

UC 1&2 US Allotransplant R NCT04494386 

UC 2 Pakistan Allotransplant R NCT04437823 

UC 1 China Allotransplant R NCT04252118 

UC 1&2 Turkey Allotransplant R NCT04392778 

Wharton’s jelly 1 Jordan Allotransplant R NCT04313322 

Wharton’s jelly 1&2 Spain Allotransplant R NCT04390139 

ND, no data; iPSC, induced pluripotent stem cells; UC, umbilical 

cord; S, stage; A, active; R, Recruiting; C, Completed 

 

Opinion and perspective 
 

Since emerging COVID-19 in 2019, scientists and 

companies have tried to make effective drugs and 

vaccines for this pandemic disease. Nowadays, some 

companies have produced vaccines such as Pfizer, 

Sputnik V, Moderna, Johnson & Johnson, 

Sinopharm, and etc. which reduced mortality (69), 

transmission (70) and symptoms of COVID-19 and 

increase immune protection against it (69). However, 

the disease still remained in most of the countries and 

besides of COVID-19 symptoms which it could be 

life disturbance and threatening, it still is reason of 

people death worldwide. In order to reduce symptoms 

and issues of COVID-19, an accessible and effective 

treatment will be needed. An inhalator anti-COVID-

19 device containing MSCs-derived exosomes 

supplemented with asRNA anti-viral RNA could be 

effective. Besides, the anti-inflammatory and 

immunomodulatory activity of MSCs-derived 

exosomes and their potential for triggering tissue 

regeneration make them a good candidate for 

treatment of COVID-19. 
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Conclusions 
 

In one hand, the asRNAs with ability to inhibit 

ssRNA of SARS-CoV-2 can be effective in silencing 

this virus replication. In other hand, MSCs secret 

exosomes, which can be loaded by asRNA of an anti-

RNA virus. Consequently, production of a specific 

anti-SARS-CoV-2 by targeting the viral genome is 

suggested for developing a novel therapeutic 

candidate for COVID-19. 
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